A New Algorithm for Medical Color Images Encryption Using Chaotic Systems
<p>Secure hash algorithm 256 (SHA-256) base transformation rounds.</p> "> Figure 2
<p>Schematic of the proposed encryption algorithm (<b>a</b>), and schematic of the proposed decryption algorithm (<b>b</b>).</p> "> Figure 3
<p>(<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>): Plain images. (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>): Respective encrypted images. (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>): Respective decrypted images. Initial values for all images: (a0 = 0.1314, b0 = 0.5214, c0 = 0.3698, and d0 = 0.8419). Values of the chaotic system: Image (<b>a</b>): sha256 = ‘9ADBBFB88CFD90C23CE114E47402054E6DDC4182510E80980EA7151CD11E6D18’, image (<b>d</b>): sha256 = ‘8BF6A886E4B58D2B530749EE9BAB54A3C360D406DC5B901CC169D7870FA3CA09’, image (<b>g</b>): sha256 = ‘49A22186DB65786789CD1391CDE4D9737039E758F39A45C59D8338DE05353337’, and image (<b>j</b>): sha256 = ‘6EB1ADE45F27A67E09A25265835F05BC11E057255DA81359299631F4724936C8’.</p> "> Figure 4
<p>(<b>a</b>): Plain image baby, and (<b>b</b>–<b>d</b>): R, G, and B histograms, respectively.</p> "> Figure 5
<p>(<b>a</b>): Baby’s decrypted image, and (<b>b</b>–<b>d</b>): R, G, and B histograms, respectively.</p> "> Figure 6
<p>Correlation histograms. (<b>a</b>–<b>c</b>): For the plain image; and (<b>d</b>–<b>f</b>): For the cipher image.</p> "> Figure 7
<p>Cipher-images within authentic primary keys and the differences between them and the plain encrypted images: (<b>a</b>–<b>e</b>) Five new encrypted images with the keys <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </semantics></math> + <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </semantics></math> + <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </semantics></math> + <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mn>0</mn> </msub> </mrow> </semantics></math> + <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> </mrow> </semantics></math>, and SHA256+<math display="inline"><semantics> <mrow> <msup> <mn>2</mn> <mrow> <mo>−</mo> <mn>128</mn> </mrow> </msup> </mrow> </semantics></math>, respectively; and (<b>f</b>–<b>j</b>) differences between the unauthentic encrypted images and the plain image.</p> "> Figure 8
<p>Selected plain-image test for white and black images, display (<b>a</b>) the full-white image, (<b>b</b>) the cipher image of panel (<b>a</b>), (<b>c</b>) the histogram of channel R (<b>b</b>), (<b>d</b>) the full-black image, (<b>e</b>) the cipher image of panel (<b>d</b>), and (<b>f</b>) the histogram of channel R.</p> "> Figure 8 Cont.
<p>Selected plain-image test for white and black images, display (<b>a</b>) the full-white image, (<b>b</b>) the cipher image of panel (<b>a</b>), (<b>c</b>) the histogram of channel R (<b>b</b>), (<b>d</b>) the full-black image, (<b>e</b>) the cipher image of panel (<b>d</b>), and (<b>f</b>) the histogram of channel R.</p> "> Figure 9
<p>Noise attack test results. (<b>a</b>,<b>b</b>) Gaussian noise (GN); (<b>c</b>,<b>d</b>) salt and pepper noise (SPN); (<b>e</b>,<b>f</b>) speckle noise (SN).</p> "> Figure 10
<p>Occlude attack test results.</p> "> Figure 10 Cont.
<p>Occlude attack test results.</p> ">
Abstract
:1. Introduction
2. Preliminary Work
2.1. Chaotic Systems
2.2. SHA-256 (Secure Hash Algorithm 256)
2.3. SHA-256 Architectures
3. Proposed Algorithm
3.1. High-Speed Permutation Process
Algorithm 1 High-speed Permutation Process |
Input: Image P of size M × N × D, Initial state: a0, b0, c0, d0, and Sha256 value of P Output: Permutated Image
|
3.2. Adaptive Diffusion
Algorithm 2 Adaptive diffusion |
Input: Input data from permutation procession Output: Encrypted Image
The decryption process is inverse encryption process. Input: Input data from permutation procession Output: Encrypted Image |
4. Experiment Result and Security Analysis
4.1. Security Analysis
4.2. Histogram Analysis
4.3. Correlation Analysis
4.4. Entropy Analysis
4.5. NPCR (Number of Pixel Change Rate) and UACI (Uniform Average Change Intensity)
4.6. Key Space
4.7. Key Sensibility Analysis
4.8. Known-Plain Image and Chosen-Plain Image Analysis
4.9. Noise Attack and Occlusion Attack
5. Comparison
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benssalah, M.; Rhaskali, Y.; Azzaz, M.S. Medical Images Encryption Based on Elliptic Curve Cryptography and Chaos Theory. In Proceedings of the 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT), El Oued, Algeria, 27–31 October 2018; pp. 222–226. [Google Scholar]
- Mohamed Parvees, M.Y.; Abdul Samath, J.; Parameswaran Bose, B. Medical Images are Safe—An Enhanced Chaotic Scrambling Approach. J. Med. Syst. 2017, 41, 167. [Google Scholar] [CrossRef] [PubMed]
- Rinkel, J.; Magalhães, D.; Wagner, F.; Frojdh, E.; Sune, R.B. Equalization method for Medipix3RX. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 801, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gimenez, E.N.; Astromskas, V.; Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 824, 101–103. [Google Scholar] [CrossRef]
- Abdel-Nabi, H.; Al-Haj, A. Medical imaging security using partial encryption and histogram shifting watermarking. In Proceedings of the 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, 17–18 May 2017; pp. 802–807. [Google Scholar]
- Abdmouleh, M.K.; Khalfallah, A.; Bouhlel, M.S. A Novel Selective Encryption DWT-Based Algorithm for Medical Images. In Proceedings of the 2017 14th International Conference on Computer Graphics, Imaging and Visualization, Marrakesh, Morocco, 23–25 May 2017; pp. 79–84. [Google Scholar]
- Lakshmi, C.; Thenmozhi, K.; Rayappan, J.B.B.; Amirtharajan, R. Encryption and watermark-treated medical image against hacking disease—An immune convention in spatial and frequency domains. Comput. Methods Progr. Biomed. 2018, 159, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zhou, Y.; Chen, C.L.P.; Xia, L. Medical image encryption using edge maps. Signal Process. 2017, 132, 96–109. [Google Scholar] [CrossRef]
- Ismail, S.M.; Said, L.A.; Radwan, A.G.; Madian, A.H.; Abu-Elyazeed, M.F. Generalized double-humped logistic map-based medical image encryption. J. Adv. Res. 2018, 10, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Park, K.; Cho, S.; Kim, S. Color Medical Image Encryption Using Two-Dimensional Chaotic Map and C-MLCA. In Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018; pp. 501–504. [Google Scholar]
- Ke, G.; Wang, H.; Zhou, S.; Zhang, H. Encryption of medical image with most significant bit and high capacity in piecewise linear chaos graphics. Measurement 2019, 135, 385–391. [Google Scholar] [CrossRef]
- Nematzadeh, H.; Enayatifar, R.; Motameni, H.; Guimarães, F.G.; Coelho, V.N. Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices. Opt. Lasers Eng. 2018, 110, 24–32. [Google Scholar] [CrossRef]
- Laiphrakpam, D.S.; Khumanthem, M.S. Medical image encryption based on improved ElGamal encryption technique. Optik 2017, 147, 88–102. [Google Scholar] [CrossRef]
- Suganya, G.; Amudha, K. Medical image integrity control using joint encryption and watermarking techniques. In Proceedings of the 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 6–8 March 2014; pp. 1–5. [Google Scholar]
- Liang, X.; Qi, G. Mechanical analysis of Chen chaotic system. Chaos Solitons Fractals 2017, 98, 173–177. [Google Scholar] [CrossRef]
- Hu, H.; Liu, L.; Ding, N. Pseudorandom sequence generator based on the Chen chaotic system. Comput. Phys. Commun. 2013, 184, 765–768. [Google Scholar] [CrossRef]
- Wang, L.; Dong, T.; Ge, M.-F. Finite-time synchronization of memristor chaotic systems and its application in image encryption. Appl. Math. Comput. 2019, 347, 293–305. [Google Scholar] [CrossRef]
- Gong, L.; Deng, C.; Pan, S.; Zhou, N. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform. Opt. Laser Technol. 2018, 103, 48–58. [Google Scholar] [CrossRef]
- Michail, H.E.; Athanasiou, G.S.; Theodoridis, G.; Gregoriades, A.; Goutis, C.E. Design and implementation of totally-self checking SHA-1 and SHA-256 hash functions’ architectures. Microprocess. Microsyst. 2016, 45, 227–240. [Google Scholar] [CrossRef]
- James, J.; Karthika, R.; Nandakumar, R. Design & Characterization of SHA 3- 256 Bit IP Core. Procedia Technol. 2016, 24, 918–924. [Google Scholar] [Green Version]
- Ahmad, I.; Shoba Das, A. Hardware implementation analysis of SHA-256 and SHA-512 algorithms on FPGAs. Comput. Electr. Eng. 2005, 31, 345–360. [Google Scholar] [CrossRef]
- Xu, S.-J.; Chen, X.-B.; Zhang, R.; Yang, Y.-X.; Guo, Y.-C. An improved chaotic cryptosystem based on circular bit shift and XOR operations. Phys. Lett. A 2012, 376, 1003–1010. [Google Scholar] [CrossRef]
- Pareek, N.K.; Patidar, V. Medical image protection using genetic algorithm operations. Soft Comput. 2016, 20, 763–772. [Google Scholar] [CrossRef]
- Hua, Z.; Yi, S.; Zhou, Y. Medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 2018, 144, 134–144. [Google Scholar] [CrossRef]
- Chai, X.; Fu, X.; Gan, Z.; Lu, Y.; Chen, Y. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process. 2019, 155, 44–62. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Yang, Z.; Hu, J.; Lei, X. A New Plaintext-Related Image Encryption Scheme Based on Chaotic Sequence. IEEE Access 2019, 7, 30344–30360. [Google Scholar] [CrossRef]
- Niyat, A.Y.; Moattar, M.H.; Torshiz, M.N. Color image encryption based on hybrid hyper-chaotic system and cellular automata. Opt. Lasers Eng. 2017, 90, 225–237. [Google Scholar] [CrossRef]
- Chen, H.; Tanougast, C.; Liu, Z.; Hao, B. Securing color image by using hyperchaotic system in gyrator transform domains. Opt. Quantum Electron. 2016, 48, 396. [Google Scholar] [CrossRef]
Images | a | d | ||||
---|---|---|---|---|---|---|
Channels | R | G | B | R | G | B |
247.0762 | 204.9082 | 220.0742 | 251.8379 | 260.2695 | 256.4063 | |
293 | 293 | 293 | 293 | 293 | 293 | |
Pass or not | Yes | Yes | Yes | Yes | Yes | Yes |
Images | g | j | ||||
---|---|---|---|---|---|---|
Channels | R | G | B | R | G | B |
285.8359 | 261.9980 | 247.2793 | 250.0836 | 210.7622 | 231.1039 | |
293 | 293 | 293 | 293 | 293 | 293 | |
Passor not | Yes | Yes | Yes | Yes | Yes | Yes |
Image | Channel | Plain-Text | Cipher-Text | ||||
---|---|---|---|---|---|---|---|
H | V | D | H | V | D | ||
a | R | 0.9952 | 0.9978 | 0.9897 | –0.0115 | 0.0048 | –0.0026 |
G | 0.9825 | 0.9881 | 0.9688 | 0.0109 | 0.0097 | –0.0161 | |
B | 0.9833 | 0.9803 | 0.9615 | –0.0224 | –0.0091 | 0.0062 | |
d | R | 0.9217 | 0.8673 | 0.8580 | 0.0097 | –0.0091 | –0.0094 |
G | 0.8575 | 0.7647 | 0.7328 | 0.0015 | 0.0075 | –0.0055 | |
B | 0.9140 | 0.8966 | 0.8626 | 0.0137 | 0.0051 | 0.0065 | |
g | R | 0.9942 | 0.9968 | 0.9887 | –0.0125 | 0.0047 | –0.0025 |
G | 0.9815 | 0.9871 | 0.9678 | 0.0109 | 0.0095 | –0.0160 | |
B | 0.9823 | 0.9793 | 0.9605 | –0.0214 | –0.0093 | 0.0063 | |
j | R | 0.9217 | 0.8663 | 0.8570 | 0.0095 | –0.0092 | –0.0093 |
G | 0.8575 | 0.7637 | 0.7318 | 0.0014 | 0.0073 | –0.0056 | |
B | 0.9140 | 0.8956 | 0.8616 | 0.0135 | 0.0052 | 0.0066 |
Image | Channel | Image a | Image d | Image g | Image j |
---|---|---|---|---|---|
Plain image | R | 6.9581 | 7.7047 | 6.9571 | 7.7067 |
G | 6.8945 | 7.4724 | 6.8955 | 7.4734 | |
B | 6.1365 | 7.7502 | 6.1355 | 7.7512 | |
RGB | 7.2528 | 7.7604 | 7.2548 | 7.7614 | |
Cipher image | R | 7.9992 | 7.9991 | 7.9982 | 7.9993 |
G | 7.9993 | 7.9991 | 7.9983 | 7.9995 | |
B | 7.9993 | 7.9991 | 7.9994 | 7.9981 | |
RGB | 7.9997 | 7.9996 | 7.9996 | 7.9994 |
Position | (12,34) | (34,56) | (56,78) | (78,90) |
---|---|---|---|---|
NPCR | 99.6232 | 99.6215 | 99.6170 | 99.5971 |
UACI | 33.4574 | 33.4952 | 33.5326 | 33.4755 |
Image | R | G | B |
---|---|---|---|
Black | 7.9993 | 7.9994 | 7.9993 |
White | 7.9994 | 7.9994 | 7.9993 |
Item | PSNR | ||
---|---|---|---|
R | G | B | |
Salt and Pepper | 34.2863 | 33.6124 | 33.3711 |
Gaussian | 30.6104 | 29.9219 | 29.7102 |
Speckle | 30.6023 | 29.8951 | 29.7059 |
Item | PSNR | ||
---|---|---|---|
R | G | B | |
Salt and pepper | 34.0961 | 33.6237 | 33.5174 |
Gaussian | 34.0106 | 33.6064 | 33.4199 |
Speckle | 31.0996 | 30.6760 | 30.4795 |
Image | Methods | Channel | Plain Image | Cipher Image | ||||
---|---|---|---|---|---|---|---|---|
H | V | D | H | V | D | |||
Image a | proposed | R | 0.9952 | 0.9978 | 0.9897 | –0.0115 | 0.0048 | –0.0026 |
G | 0.9825 | 0.9881 | 0.9688 | 0.0109 | 0.0097 | –0.0161 | ||
B | 0.9833 | 0.9803 | 0.9615 | –0.0224 | –0.0091 | 0.0062 | ||
Algorithm [10] | R | 0.9952 | 0.9978 | 0.9897 | –0.0122 | –0.0117 | –0.0238 | |
G | 0.9825 | 0.9881 | 0.9688 | –0.0113 | 0.0079 | –0.0230 | ||
B | 0.9833 | 0.9803 | 0.9615 | –0.0099 | 0.0149 | 0.0092 | ||
Algorithm [24] | R | 0.9952 | 0.9978 | 0.9897 | –0.0114 | –0.0110 | –0.0174 | |
G | 0.9825 | 0.9881 | 0.9688 | –0.0206 | –0.0071 | 0.0180 | ||
B | 0.9833 | 0.9803 | 0.9615 | –0.0134 | –0.0106 | –0.00194 | ||
Image d | proposed | R | 0.9217 | 0.8673 | 0.8580 | 0.0097 | –0.0091 | –0.0094 |
G | 0.8575 | 0.7647 | 0.7328 | 0.0015 | 0.0075 | –0.0055 | ||
B | 0.9140 | 0.8966 | 0.8626 | 0.0137 | 0.0051 | 0.0065 | ||
Algorithm [10] | R | 0.9217 | 0.8673 | 0.8580 | 0.0133 | –0.0095 | –0.0070 | |
G | 0.8575 | 0.7647 | 0.7328 | –0.0182 | 0.0230 | –0.0056 | ||
B | 0.9140 | 0.8966 | 0.8626 | –0.0282 | –7.3230 × 10–4 | –0.0073 | ||
Algorithm [24] | R | 0.9217 | 0.8673 | 0.8580 | –0.0154 | –0.0242 | 0.0094 | |
G | 0.8575 | 0.7647 | 0.7328 | –0.0059 | 0.0109 | 1.7711 × 10–4 | ||
B | 0.9140 | 0.8966 | 0.8626 | –0.0216 | –0.0089 | 0.0077 | ||
Image g | proposed | R | 0.9942 | 0.9968 | 0.9887 | –0.0125 | 0.0047 | –0.0025 |
G | 0.9815 | 0.9871 | 0.9678 | 0.0109 | 0.0095 | –0.0160 | ||
B | 0.9823 | 0.9793 | 0.9605 | –0.0214 | –0.0093 | 0.0063 | ||
Algorithm [10] | R | 0.9942 | 0.9968 | 0.9887 | –0.0136 | 0.0066 | –0.0035 | |
G | 0.9815 | 0.9871 | 0.9678 | 0.0113 | 0.0103 | –0.0190 | ||
B | 0.9823 | 0.9793 | 0.9605 | –0.0237 | –0.0098 | 0.0073 | ||
Algorithm [24] | R | 0.9942 | 0.9968 | 0.9887 | –0.0129 | 0.0049 | –0.0076 | |
G | 0.9815 | 0.9871 | 0.9678 | 0.0111 | 0.0101 | –0.0171 | ||
B | 0.9823 | 0.9793 | 0.9605 | –0.0231 | –0.0156 | 0.0067 | ||
Image j | proposed | R | 0.9217 | 0.8663 | 0.8570 | 0.0095 | –0.0092 | –0.0093 |
G | 0.8575 | 0.7637 | 0.7318 | 0.0014 | 0.0073 | –0.0056 | ||
B | 0.9140 | 0.8956 | 0.8616 | 0.0135 | 0.0052 | 0.0066 | ||
Algorithm [10] | R | 0.9217 | 0.8663 | 0.8570 | 0.0115 | –0.0102 | –0.0105 | |
G | 0.8575 | 0.7637 | 0.7318 | 0.0084 | 0.0094 | –0.0083 | ||
B | 0.9140 | 0.8956 | 0.8616 | 0.0196 | 0.0067 | 0.0089 | ||
Algorithm [24] | R | 0.9217 | 0.8663 | 0.8570 | 0.0115 | –0.0111 | –0.0106 | |
G | 0.8575 | 0.7637 | 0.7318 | 0.0082 | 0.0103 | –0.0074 | ||
B | 0.9140 | 0.8956 | 0.8616 | 0.0161 | 0.0083 | 0.0090 |
Image | Channel | Proposed Algorithm Image a | Method [10] Image a | Method [24] Image a | Proposed Algorithm Image d | Method [10] Image d | Method [24] Image d |
---|---|---|---|---|---|---|---|
Plainimage | R | 6.9581 | 6.9581 | 6.9581 | 7.7047 | 7.7047 | 7.7047 |
G | 6.8945 | 6.8945 | 6.8945 | 7.4724 | 7.4724 | 7.4724 | |
B | 6.1365 | 6.1365 | 6.1365 | 7.7502 | 7.7502 | 7.7502 | |
RGB | 7.2528 | 7.2528 | 7.2528 | 7.7604 | 7.7604 | 7.7604 | |
Cipherimage | R | 7.9992 | 7.9991 | 7.9992 | 7.9991 | 7.9991 | 7.9988 |
G | 7.9993 | 7.9989 | 7.9992 | 7.9991 | 7.9991 | 7.9992 | |
B | 7.9993 | 7.9988 | 7.9993 | 7.9991 | 7.9990 | 7.9989 | |
RGB | 7.9997 | 7.9996 | 7.9997 | 7.9996 | 7.9995 | 7.9996 |
Image | Channel | Proposed Algorithm Image g | Method [10] Image g | Method [24] Image g | Proposed Algorithm Image j | Method [10] Image j | Method [24] Image j |
---|---|---|---|---|---|---|---|
Plainimage | R | 6.9571 | 6.9571 | 6.9571 | 7.7067 | 7.7067 | 7.7067 |
G | 6.8955 | 6.8955 | 6.8955 | 7.4734 | 7.4734 | 7.4734 | |
B | 6.1355 | 6.1355 | 6.1355 | 7.7512 | 7.7512 | 7.7512 | |
RGB | 7.2548 | 7.2548 | 7.2548 | 7.7614 | 7.7614 | 7.7614 | |
Cipherimage | R | 7.9982 | 7.9981 | 7.9982 | 7.9993 | 7.9993 | 7.9989 |
G | 7.9983 | 7.9979 | 7.9982 | 7.9995 | 7.9995 | 7.9994 | |
B | 7.9994 | 7.9985 | 7.9994 | 7.9981 | 7.9980 | 7.9979 | |
RGB | 7.9996 | 7.9995 | 7.9996 | 7.9994 | 7.9993 | 7.9994 |
Position | Proposed Algorithm Position (12, 34) | Method [10] Position (12, 34) | Method [24] Position (12, 34) | Proposed Algorithm Position (34, 56) | Method [10] Position (34, 56) | Method [24] Position (34, 56) |
---|---|---|---|---|---|---|
NPCR | 99.6232 | 99.6222 | 99.6218 | 99.6215 | 99.5015 | 99.6187 |
UACI | 33.4574 | 33.4504 | 33.4767 | 33.4952 | 33.3952 | 33.4850 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moafimadani, S.S.; Chen, Y.; Tang, C. A New Algorithm for Medical Color Images Encryption Using Chaotic Systems. Entropy 2019, 21, 577. https://doi.org/10.3390/e21060577
Moafimadani SS, Chen Y, Tang C. A New Algorithm for Medical Color Images Encryption Using Chaotic Systems. Entropy. 2019; 21(6):577. https://doi.org/10.3390/e21060577
Chicago/Turabian StyleMoafimadani, Seyed Shahabeddin, Yucheng Chen, and Chunming Tang. 2019. "A New Algorithm for Medical Color Images Encryption Using Chaotic Systems" Entropy 21, no. 6: 577. https://doi.org/10.3390/e21060577