Effect of Molybdenum Additives on Corrosion Behavior of (CoCrFeNi)100−xMox High-Entropy Alloys
<p>XRD (X-ray diffraction) patterns of the (CoCrFeNi)<sub>100−<span class="html-italic">x</span></sub>Mo<span class="html-italic"><sub>x</sub></span> (<span class="html-italic">x</span> = 1, 2, 3) high entropy alloys.</p> "> Figure 2
<p>SEM (scanning-electron microscopy) images of the (CoCrFeNi)<sub>100−<span class="html-italic">x</span></sub>Mo<span class="html-italic"><sub>x</sub></span> high-entropy alloys: (<b>a</b>) <span class="html-italic">x</span> = 1; (<b>b</b>) <span class="html-italic">x</span> = 2; (<b>c</b>) <span class="html-italic">x</span> = 3; (<b>d</b>) 10 × magnification.</p> "> Figure 3
<p>Vickers hardness of the (CoCrFeNi)<sub>100−<span class="html-italic">x</span></sub>Mo<span class="html-italic"><sub>x</sub></span> high-entropy alloys as a function of the Mo content.</p> "> Figure 4
<p>(<b>a</b>) Compressive stress–strain curves and the inner longitudinal-section SEM images of the (CoCrFeNi)<sub>100−<span class="html-italic">x</span></sub>Mo<span class="html-italic"><sub>x</sub></span> alloys after compression deformation: (<b>b</b>) <span class="html-italic">x</span> = 1; (<b>c</b>) <span class="html-italic">x</span> = 2; (<b>d</b>) <span class="html-italic">x</span> = 3.</p> "> Figure 5
<p>Polarization curves of the (CoCrFeNi)<sub>100−<span class="html-italic">x</span></sub>Mo<span class="html-italic"><sub>x</sub></span> (<span class="html-italic">x</span> = 1, 2, and 3) alloys in a 3.5% NaCl solution.</p> "> Figure 6
<p>SEM images of (CoCrFeNi)<sub>100−<span class="html-italic">x</span></sub>Mo<span class="html-italic"><sub>x</sub></span> after potentiodynamic polarization in a 3.5% NaCl solution: (<b>a</b>) <span class="html-italic">x</span> = 1; (<b>b</b>) <span class="html-italic">x</span> = 2; (<b>c</b>) <span class="html-italic">x</span> = 3; (<b>d</b>) the interdendrite morphology of the Mo<sub>3</sub> alloy.</p> "> Figure 7
<p>Polarization curves of the (CoCrFeNi)<sub>100−<span class="html-italic">x</span></sub>Mo<span class="html-italic"><sub>x</sub></span> (<span class="html-italic">x</span> = 1, 2, and 3) alloys in a 0.5 M H<sub>2</sub>SO<sub>4</sub> solution</p> "> Figure 8
<p>SEM images of (CoCrFeNi)<sub>100−<span class="html-italic">x</span></sub>Mo<span class="html-italic"><sub>x</sub></span> after potentiodynamic polarization in a 0.5 M H<sub>2</sub>SO<sub>4</sub> solution: (<b>a</b>) <span class="html-italic">x</span> = 1; (<b>b</b>) <span class="html-italic">x</span> = 2; (<b>c</b>) <span class="html-italic">x</span> = 3; (<b>d</b>) partial view of the Mo<sub>3</sub> alloy.</p> "> Figure 9
<p>Comparison of the <span class="html-italic">i<sub>corr</sub></span> and <span class="html-italic">E<sub>corr</sub></span> between high entropy alloys (HEAs) and conventional alloys: (<b>a</b>) in a 0.5 M NaCl solution; (<b>b</b>) in a 0.5 M H<sub>2</sub>SO<sub>4</sub> solution.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Fabrication
2.2. Microstructure of the (CoCrFeNi)100−xMox Alloys
2.3. Mechanical Properties
2.4. Electrochemical Corrosion Test
2.5. Corroded Microstructure
3. Results and Discussion
3.1. Microstructure of the (CoCrFeNi)100−xMox Alloys
3.2. Mechanical Properties
3.3. Environmental Effect on Corrosion Behavior
3.3.1. Corrosion Behavior in Chloride-Containing Solutions
3.3.2. Corrosion Behavior in Acid Solutions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peng, Q.; Meng, F.; Yang, Y.; Lu, C.; Deng, H.; Wang, L.; De, S.; Gao, F. Shockwave generates <100> dislocation loops in bcc iron. Nat. Commun. 2018, 9, 4880. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Feng, K.; Li, Z.; Lu, F.; Li, R.; Huang, J.; Wu, Y. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl. Surface Sci. 2017, 396, 1420–1426. [Google Scholar] [CrossRef]
- Shun, T.T.; Chang, L.Y.; Shiu, M.H. Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy. Mater. Charact. 2013, 81, 92–96. [Google Scholar] [CrossRef]
- Senkov, O.N.; Zhang, F.; Miller, J.D. Phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy: Comparison of experimental and simulated data. Entropy 2013, 15, 3796–3809. [Google Scholar] [CrossRef]
- Qiu, X.W.; Zhang, Y.P.; He, L.; Liu, C.-G. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloys Compd. 2013, 549, 195–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, T.T.Z.Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Tung, C.C.; Yeh, J.W.; Shun, T.-T.; Chen, S.K.; Huang, Y.S.; Chen, H.C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 2007, 61, 1–5. [Google Scholar] [CrossRef]
- Yeh, J.W. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; He, Y.Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater. Des. 2011, 32, 1910–1915. [Google Scholar] [CrossRef]
- Chen, Y.; Duval, T.; Hung, U.; Yeh, J.; Shih, H. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel. Corros. Sci. 2005, 47, 2257–2279. [Google Scholar] [CrossRef]
- Qiu, X.-W.; Wu, M.J.; Liu, C.G.; Zhang, Y.P.; Huang, C.-X. Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids. J. Alloys Compd. 2017, 708, 353–357. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, X.H.; Liao, W.B.; Zhao, K. Effects of nitrogen content on the structure and mechanical properties of (Al0.5CrFeNiTi0.25) Nx high-entropy films by reactive sputtering. Entropy 2018, 20, 624. [Google Scholar] [CrossRef]
- Hsu, Y.J.; Chiang, W.C.; Wu, J.K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys. 2005, 92, 112–117. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B.; Liaw, P.K. Corrosion-resistant high-entropy alloys: A review. Metals 2017, 7, 43. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, H.; Fu, H.; Wang, A.; Li, H.; Hu, Z. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J. Alloys Compd. 2010, 497, 52–56. [Google Scholar] [CrossRef]
- Zhu, J.; Fu, H.; Zhang, H.; Wang, A.; Li, H.; Hu, Z. Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater. Sci. Eng. A 2010, 527, 6975–6979. [Google Scholar] [CrossRef]
- Miao, J.; Guo, T.; Ren, J.; Zhang, A.; Su, B.; Meng, J. Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition. Vacuum 2018, 149, 324–330. [Google Scholar] [CrossRef]
- Nilsson, J.O.; Kangas, P.; Wilson, A.; Karlsson, T. Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38 N superduplex stainless steel. Metall. Mater. Trans. A 2000, 31, 35–45. [Google Scholar] [CrossRef]
- Lopez, N.; Cid, M.; Puiggali, M. Influence of o-phase on mechanical properties and corrosion resistance of duplex stainless steels. Corros. Sci. 1999, 41, 1615–1631. [Google Scholar] [CrossRef]
- Schwind, M.; Källqvist, J.; Nilsson, J.O.; Ågren, J.; Andrén, H.O. σ-phase precipitation in stabilized austenitic stainless steels. Acta Mater. 2000, 48, 2473–2481. [Google Scholar] [CrossRef]
- Tsau, C.H.; Tsai, M.C. The effects of Mo and Nb on the microstructures and properties of CrFeCoNi (Nb, Mo) alloys. Entropy 2018, 20, 648. [Google Scholar] [CrossRef]
- Chou, Y.; Yeh, J.; Shih, H. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros. Sci. 2010, 52, 2571–2581. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, P.; Zhang, M.; Liu, D.; Zhou, Z.; Ma, M.; Liaw, P.; Li, G.; Liu, R. Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys. Mater. Sci. Eng. A 2017, 707, 708–716. [Google Scholar] [CrossRef]
- Li, T.; Liu, B.; Liu, Y.; Guo, W.; Fu, A.; Li, L.; Yan, N.; Fang, Q. Microstructure and mechanical properties of particulate reinforced NbMoCrTiAl High Entropy based composite. Entropy 2018, 20, 517. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, S.; Zhang, C.; Zhang, H.; Dong, S. Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying. J. Alloys Compd. 2017, 698, 761–770. [Google Scholar] [CrossRef]
- Qiu, X.W.; Liu, C.G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J. Alloys Compd. 2013, 553, 216–220. [Google Scholar] [CrossRef]
- Lee, C.; Chang, C.; Chen, Y.; Yeh, J.; Shih, H. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments. Corros. Sci. 2008, 50, 2053–2060. [Google Scholar] [CrossRef]
- Xiao, D.; Zhou, P.; Wu, W.; Diao, H.; Gao, M.; Song, M.; Liaw, P. Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr, Ti) high entropy alloys. Mater. Des. 2017, 116, 438–447. [Google Scholar] [CrossRef]
Element | Cr | Fe | Co | Ni | Mo | |
---|---|---|---|---|---|---|
Mo1 | Dendrite | 25.25 | 23.54 | 26.07 | 24.53 | 0.61 |
interdendrite | 27.69 | 22.31 | 24.03 | 24.94 | 1.04 | |
Mo2 | Dendrite | 26.02 | 25.17 | 24.55 | 23.56 | 0.69 |
interdendrite | 27.20 | 23.20 | 23.33 | 23.87 | 2.40 | |
Mo3 | Dendrite | 24.99 | 23.47 | 25.28 | 24.96 | 1.31 |
interdendrite | 26.82 | 22.54 | 24.81 | 24.35 | 1.50 |
Alloy | Yield Stress σy (MPa) | Compressive Strength σmax (MPa) | Fracture Strain εp (%) |
---|---|---|---|
Mo1 | 113.6 | Not fractured | >60 |
Mo2 | 119.7 | Not fractured | >60 |
Mo3 | 141.1 | Not fractured | >60 |
Alloy | Ecorr (mV) | Icorr (μA/cm2) | Eb (mV) | Epit (mV) | ∆E (mV) |
---|---|---|---|---|---|
Mo1 | −199 | 0.402 | 992 | −5 | 997 |
Mo2 | −277 | 0.235 | 968 | −108 | 1076 |
Mo3 | −493 | 6.610 | 1053 | −358 | 1411 |
Element | Region | Cr (%) | Fe (%) | Co (%) | Ni (%) | Mo (%) |
---|---|---|---|---|---|---|
Mo1 | A | 26.17 | 24.56 | 23.32 | 25.01 | 0.93 |
B | 30.79 | 23.79 | 22.87 | 22.51 | 0.04 | |
Mo2 | A | 26.44 | 23.72 | 24.32 | 23.83 | 1.70 |
B | 35.81 | 23.79 | 19.78 | 20.11 | 0.52 | |
Mo3 | DR | 24.96 | 25.21 | 24.72 | 24.88 | 0.23 |
IR | 29.06 | 23.21 | 22.43 | 22.76 | 2.54 |
Alloy | Ecorr (mV) | Icorr (μA/cm2) | Epp (mV) | ipp (μA/cm2) | ∆E (mV) |
---|---|---|---|---|---|
Mo1 | −294 | 34.1 | −225 | 117 | 655 |
Mo1 | −290 | 28.0 | −225 | 68 | 681 |
Mo1 | −279 | 15.4 | −239 | 25 | 751 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, J.; Yi, H.; Qi, W.; Peng, Q. Effect of Molybdenum Additives on Corrosion Behavior of (CoCrFeNi)100−xMox High-Entropy Alloys. Entropy 2018, 20, 908. https://doi.org/10.3390/e20120908
Wang W, Wang J, Yi H, Qi W, Peng Q. Effect of Molybdenum Additives on Corrosion Behavior of (CoCrFeNi)100−xMox High-Entropy Alloys. Entropy. 2018; 20(12):908. https://doi.org/10.3390/e20120908
Chicago/Turabian StyleWang, Wenrui, Jieqian Wang, Honggang Yi, Wu Qi, and Qing Peng. 2018. "Effect of Molybdenum Additives on Corrosion Behavior of (CoCrFeNi)100−xMox High-Entropy Alloys" Entropy 20, no. 12: 908. https://doi.org/10.3390/e20120908