Multi-Graph Multi-Label Learning Based on Entropy
<p>An example figure with structure Graph. (<b>a</b>) Original image; (<b>b</b>) Represented in Graph.</p> "> Figure 2
<p>An example figure with Multi-Label. (<b>a</b>) Original image; (<b>b</b>) Segmented and labeled.</p> "> Figure 3
<p>A graph dataset with class label.</p> "> Figure 4
<p>An example of MGML (1). (<b>a</b>) Original images and labels; (<b>b</b>) Segmented to multiple graphs; (<b>c</b>) Informative subgraphs.</p> "> Figure 5
<p>An example of MGML (2). (<b>a</b>) Multiple instances; (<b>b</b>) Relation between informative subgraphs and labels.</p> "> Figure 6
<p>An example of MGML (3). (<b>a</b>) Unlabeled image; (<b>b</b>) Segmented to multiple graphs.</p> "> Figure 7
<p>Results of efficiency experiments. (<b>a</b>) <span class="html-italic">MSRC v2</span> Dataset; (<b>b</b>) <span class="html-italic">Scenes</span> Dataset; (<b>c</b>) <span class="html-italic">Corel5K</span> Dataset.</p> ">
Abstract
:1. Introduction
- Our algorithm is based on a multi-graph and it can also solve multi-label (i.e., multiple subjects) problems, which means it can deal with multiple semantic information. To the best of our knowledge, we are the first one to propose such an algorithm.
- We introduce a novel subgraph-mining technique called Entropy-Based Subgraph Mining. It calculates the information entropy for each graph [13] and uses this criterion to mine the informative subgraphs, which is more suitable than the one based on frequent-subgraph.
- In the part of building the classifier, we utilize the algorithm MIML-ELM (we will discuss it briefly in Section 2.3). It uses the Extreme Learning Machine rather than Support Vector Machine to build an image classifier, which is more efficient.
2. Related Work
2.1. Graph-Structure Classification
2.2. Multi-Instance Multi-Label Learning
2.3. MIML-ELM
3. The MGML Algorithm
3.1. Problem Definition
3.2. Overall Framework of MGML
3.3. Mining Informative Subgraphs
3.3.1. Evaluation of Informative Subgraphs
3.3.2. Entropy-Based Subgraph Mining
Algorithm 1: GraphSet_Projection |
3.4. Building Classifier
Algorithm 2:ESM |
3.5. Example of MGML
4. Experimental Section
4.1. Datasets
4.2. Evaluation Criteria
- RankingLoss , where denotes the complementary set of in Y. It indicates the average fraction of labels that are misordered for a specific object. The smaller the value of RankingLoss is, the better the performance reaches. When it equals to 0, the performance reaches perfect.
- OneError . It indicates the average time that the top labels in the rank are not the correct ones for a specific object. The smaller the value of OneError is, the better the performance reached. When it equals 0, the performance can reach perfection.
- Coverage . It indicates the average number of labels in the rank that need to be included to cover all the correct labels for a specific object. The smaller the value of Coverage is, the better the performance.
- Average Precision . It indicates the the average fraction of correct labels in all labels . The larger the value of Average Precision is, the better the performance. When it equals 1, the performance can reach perfection.
4.3. Effectiveness
4.4. Efficiency
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, W.; Vong, C.; Yang, Y.; Wong, P. Encrypted image classification based on multilayer extreme learning machine. Multidimens. Syst. Signal Process. 2017, 28, 851–865. [Google Scholar] [CrossRef]
- Yan, K.; Li, Z.; Zhang, C. A New multi-instance multi-label learning approach for image and text classification. Multimed. Tools Appl. 2016, 75, 7875–7890. [Google Scholar] [CrossRef]
- Tang, P.; Wang, X.; Feng, B.; Liu, W. Learning Multi-Instance Deep Discriminative Patterns for Image Classification. IEEE Trans. Image Process. 2017, 26, 3385–3396. [Google Scholar] [CrossRef] [PubMed]
- Chaiyakhan, K.; Kerdprasop, N.; Kerdprasop, K. Feature Selection Techniques for Breast Cancer Image Classification with Support Vector Machine. Lect. Notes Eng. Comput. Sci. 2016, 2221, 327–332. [Google Scholar]
- Bashier, H.; Hoe, L.; Hui, L.; Azli, M.; Han, P.; Kwee, W.; Sayeed, M. Texture classification via extended local graph structure. Optik Int. J. Light Electron Opt. 2016, 127, 638–643. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Yue, J.; Li, D. Image segmentation incorporating double-mask via graph cuts. Comput. Electr. Eng. 2016, 54, 246–254. [Google Scholar] [CrossRef]
- Wu, J.; Pan, S.; Zhu, X.; Zhang, C.; Wu, X. Positive and Unlabeled Multi-Graph Learning. IEEE Trans. Cybern. 2017, 47, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hong, J.; Pan, S.; Zhu, X.; Cai, Z.; Zhang, C. Multi-graph-view subgraph mining for graph classification. Knowl. Inf. Syst. 2016, 48, 29–54. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, X.; Zhang, C.; Yu, P.S. Bag Constrained Structure Pattern Mining for Multi-Graph Classification. IEEE Trans. Knowl. Data Eng. 2014, 26, 2382–2396. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, X.; Zhang, C.; Cai, Z. Multi-instance Multi-graph Dual Embedding Learning. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 827–836. [Google Scholar]
- Wei, Y.; Xia, W.; Lin, M.; Huang, J.; Ni, B.; Dong, J.; Zhao, Y.; Yan, S. HCP: A Flexible CNN Framework for Multi-Label Image Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1901–1907. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.; Thomas, S.; Thampi, S.; El-Alfy, E. Improvised Apriori with frequent subgraph tree for extracting frequent subgraphs. J. Intell. Fuzzy Syst. 2017, 32, 3209–3219. [Google Scholar] [CrossRef]
- Bai, L.; Hancock, E. Fast depth-based subgraph kernels for unattributed graphs. Pattern Recognit. 2016, 50, 233–245. [Google Scholar] [CrossRef]
- Ketkar, N.; Holder, L.; Cook, D. Empirical Comparison of Graph Classification Algorithms. In Proceedings of the IEEE Symposium Computational Intelligence and Data Mining (CIDM), Nashville, TN, USA, 30 March–2 April 2009; pp. 259–266. [Google Scholar]
- Inokuchi, A.; Washio, T.; Motoda, H. An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data. In Proceedings of the Fourth European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), Lyon, France, 13–16 September 2000; pp. 13–23. [Google Scholar]
- Nijssen, S.; Kok, J. A Quickstart in Frequent Structure Mining can Make a Difference. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Seattle, WA, USA, 22–25 August 2004; pp. 647–652. [Google Scholar]
- Saigo, H.; Nowozin, S.; Kadowaki, T.; Kudo, T.; Tsuda, K. gBoost: A Mathematical Programming Approach to Graph Classification and Regression. Mach. Learn. 2009, 75, 69–89. [Google Scholar] [CrossRef]
- Yan, X.; Han, J. gSpan: Graph-Based Substructure Pattern Mining. In Proceedings of the IEEE International Conference on Data Mining (ICDM), Maebashi, Japan, 9–12 December 2002; pp. 721–724. [Google Scholar]
- Zhao, Y.; Kong, X.; Yu, P.S. Positive and Unlabeled Learning for Graph Classification. In Proceedings of the IEEE 11th International Conference on Data Mining (ICDM), Vancouver, BC, Canada, 11–14 December 2011; pp. 962–971. [Google Scholar]
- Kong, X.; Yu, P. Multi-Label Feature Selection for Graph Classification. In Proceedings of the 10th International Conference on Data Mining (ICDM), Sydney, Australia, 13–17 December 2010; pp. 274–283. [Google Scholar]
- Wu, J.; Huang, S.; Zhou, Z. Genome-wide protein function prediction through multi-instance multi-label learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2014, 11, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, M. Multi-instance multi-label learning with application to scene classification. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2007; pp. 1609–1616. [Google Scholar]
- Li, Y.; Ji, S.; Kumar, S.; Ye, J.; Zhou, Z. Drosophila gene expression pattern annotation through multi-instance multi-label learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 98–112. [Google Scholar] [PubMed]
- Yin, Y.; Zhao, Y.; Li, C.; Zhang, B. Improving Multi-Instance Multi-Label Learning by Extreme Learning Machine. Appl. Sci. 2016, 6, 160. [Google Scholar] [CrossRef]
- Martino, G.; Navarin, N.; Sperduti, A. Graph Kernels exploiting Weisfeiler-Lehman Graph Isomorphism Test Extensions. Neural Inf. Process. 2014, 8835, 93–100. [Google Scholar]
- Seeland, M.; Kramer, A.K.S. A Structural Cluster Kernel for Learning on Graphs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Beijing, China, 12–16 August 2012; pp. 516–524. [Google Scholar]
- Riesen, K.; Bunke, H. Graph Classification by Means of Lipschitz Embedding. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, S.; Tisi, M.; Cabot, J.; Hu, Z. Feature-based classification of bidirectional transformation approaches. Softw. Syst. Model. 2016, 15, 907–928. [Google Scholar] [CrossRef]
- Deshpande, M.; Kuramochi, M.; Wale, N.; Karypis, G. Frequent Substructure-Based Approaches for Classifying Chemical Compounds. IEEE Trans. Knowl. Data Eng. 2005, 17, 1036–1050. [Google Scholar] [CrossRef]
- Maruping, L.; Venkatesh, V.; Brown, S. Going beyond intention: Integrating behavioral expectation into the unified theory of acceptance and use of technology. J. Assoc. Inf. Sci. Technol. 2017, 68, 623–637. [Google Scholar] [CrossRef]
- Balankin, A.; Mena, B.; Cruz, M. Topological Hausdorff dimension and geodesic metric of critical percolation cluster in two dimensions. Phys. Lett. A 2017, 381, 2665–2672. [Google Scholar] [CrossRef]
- Winn, J.; Criminisi, A.; Minka, T. Object categorization by learned universal visual dictionary. In Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China, 17–21 October 2005; Volume 2, pp. 1800–1807. [Google Scholar]
- Zhou, Z.; Zhang, M.; Huang, S.; Li, Y. Multi-instance multilabel learning. Artif. Intell. 2012, 176, 2291–2320. [Google Scholar] [CrossRef]
- Duygulu, P.; Barnard, K.; Freitas, J.; Forsyth, D. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002; pp. 97–112. [Google Scholar]
- Nowozin, S.; Tsuda, K.; Uno, T.; Kudo, T.; Bakir, G. Weighted Substructure Mining for Image Analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
Dataset | # of Bags | # of Labels | Labels Per Bag |
---|---|---|---|
MSRC v2 | 591 | 23 | 2.5 |
Scenes | 2000 | 5 | 1.2 |
Corel5K | 5000 | 260 | 3.5 |
MSRC v2 | Evaluation Criterion | ||||
---|---|---|---|---|---|
RankingLoss↓ | OneError↓ | Coverage↓ | Average Precision↑ | ||
① MGML-ELM | hn = 50 | 0.070079 | 0.183039 | 3.92824 | 0.809013 |
hn = 100 | 0.071367 | 0.172589 | 3.928934 | 0.820388 | |
hn = 150 | 0.075182 | 0.19797 | 3.989848 | 0.804771 | |
hn = 200 | 0.07181 | 0.187817 | 3.86802 | 0.808192 | |
② MGML-SVM | Cost = 1 | 0.154664 | 0.19797 | 7.35533 | 0.754622 |
Cost = 2 | 0.171189 | 0.229066 | 7.122844 | 0.761665 | |
Cost = 3 | 0.183357 | 0.233503 | 7.634518 | 0.735131 | |
Cost = 4 | 0.140284 | 0.219557 | 7.628352 | 0.735253 | |
Cost = 5 | 0.137361 | 0.187817 | 6.187817 | 0.762115 | |
③ MIML-SVM | Cost = 1 | 0.105581 | 0.295073 | 5.267476 | 0.710714 |
Cost = 2 | 0.104209 | 0.292204 | 5.218223 | 0.715079 | |
Cost = 3 | 0.100998 | 0.253995 | 5.044584 | 0.721987 | |
Cost = 4 | 0.097587 | 0.247775 | 4.890471 | 0.73787 | |
Cost = 5 | 0.0955 | 0.240682 | 4.880897 | 0.745322 |
Scene | Evaluation Criterion | ||||
---|---|---|---|---|---|
RankingLoss↓ | OneError↓ | Coverage↓ | Average Precision↑ | ||
① MGML-ELM | hn = 50 | 0.16927 | 0.318 | 1.771 | 0.798919 |
hn = 100 | 0.172833 | 0.33 | 1.81 | 0.798367 | |
hn = 150 | 0.165 | 0.304 | 1.78 | 0.811867 | |
hn = 200 | 0.160667 | 0.312 | 1.762 | 0.8102 | |
② MGML-SVM | Cost = 1 | 0.299667 | 0.806 | 1.324 | 0.555683 |
Cost = 2 | 0.298835 | 0.434 | 1.324 | 0.694689 | |
Cost = 3 | 0.2935 | 0.34 | 1.284 | 0.7401 | |
Cost = 4 | 0.252933 | 0.36 | 1.312 | 0.630968 | |
Cost = 5 | 0.237167 | 0.458 | 1.062 | 0.71515 | |
③ MIML-SVM | Cost = 1 | 0.910205 | 0.950815 | 3.810687 | 0.242251 |
Cost = 2 | 0.91073 | 0.95178 | 3.844675 | 0.242479 | |
Cost = 3 | 0.91348 | 0.956172 | 3.864988 | 0.245989 | |
Cost = 4 | 0.914378 | 0.957471 | 3.86676 | 0.246726 | |
Cost = 5 | 0.917939 | 0.958322 | 3.867907 | 0.249013 |
Corel5K | Evaluation Criterion | ||||
---|---|---|---|---|---|
RankingLoss↓ | OneError↓ | Coverage↓ | Average Precision↑ | ||
① MGML-ELM | hn = 50 | 0.202493 | 0.750168 | 113.8968 | 0.224968 |
hn = 100 | 0.197103 | 0.743487 | 113.354709 | 0.224146 | |
hn = 150 | 0.21584 | 0.755511 | 120.549098 | 0.219783 | |
hn = 200 | 0.205424 | 0.751503 | 119.306613 | 0.225752 | |
② MGML-SVM | Cost = 1 | 0.30124 | 0.857229 | 139.0005 | 0.120073 |
Cost = 2 | 0.301264 | 0.86724 | 140.9756 | 0.121792 | |
Cost = 3 | 0.301906 | 0.868129 | 141.8067 | 0.122804 | |
Cost = 4 | 0.304838 | 0.870358 | 143.3142 | 0.123633 | |
Cost = 5 | 0.307872 | 0.880693 | 144.8687 | 0.128766 | |
③ MIML-SVM | Cost = 1 | 0.191867 | 0.768118 | 110.4207 | 0.217195 |
Cost = 2 | 0.191899 | 0.768204 | 110.4322 | 0.217209 | |
Cost = 3 | 0.191922 | 0.768299 | 110.4657 | 0.217219 | |
Cost = 4 | 0.191978 | 0.768416 | 110.4719 | 0.217285 | |
Cost = 5 | 0.191997 | 0.768899 | 110.5187 | 0.217299 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Zhao, Y. Multi-Graph Multi-Label Learning Based on Entropy. Entropy 2018, 20, 245. https://doi.org/10.3390/e20040245
Zhu Z, Zhao Y. Multi-Graph Multi-Label Learning Based on Entropy. Entropy. 2018; 20(4):245. https://doi.org/10.3390/e20040245
Chicago/Turabian StyleZhu, Zixuan, and Yuhai Zhao. 2018. "Multi-Graph Multi-Label Learning Based on Entropy" Entropy 20, no. 4: 245. https://doi.org/10.3390/e20040245