Quantitative EEG Markers of Entropy and Auto Mutual Information in Relation to MMSE Scores of Probable Alzheimer’s Disease Patients
<p>Histograms of (<b>a</b>) age; (<b>b</b>) years of education; (<b>c</b>) duration of illness; and (<b>d</b>) MMSE scores of the 79 subjects participating in this study.</p> "> Figure 2
<p>qEEG markers at electrode site T7 or C3. The regression lines are represented by setting co-predictors (age, duration of illness, and years of education) at mean, tabulated in <a href="#entropy-19-00130-t001" class="html-table">Table 1</a>. (<b>a</b>) ShE at T7, (<b>b</b>) TsE at T7, (<b>c</b>) MsE modified at <math display="inline"> <semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math>, & (<b>d</b>) SpE at T7.</p> "> Figure 3
<p>(<b>a</b>) AMI at C3 and (<b>b</b>) central cluster versus MMSE scores. The regression lines of models are represented by setting co-predictors (age, duration of illness, and years of education) at mean, tabulated in <a href="#entropy-19-00130-t001" class="html-table">Table 1</a>.</p> "> Figure 4
<p>The computed R<sup>2</sup> of significant linear regression models (<b>a</b>) ShE, (<b>b</b>) TsE, (<b>c</b>) MsE modified <math display="inline"> <semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics> </math>, & (<b>d</b>) AMI at specific electrode, insignificant models are left blank. Electrode sites with R<sup>2</sup> > 0.20 are shaded in light green, R<sup>2</sup> > 0.30 in green, and R<sup>2</sup> > 0.40 in dark green.</p> "> Figure 5
<p>R<sup>2</sup> of regression models at electrode sites with MsE modified, at different scales, as main predictor.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Ethical Statement
2.3. EEG Recordings
2.4. EEG Preprocessing
- Visual inspection by an expert to exclude segments in the recording with highly irregular signals due to any patient movements, loose, or detached electrodes. An average of 168s from the total three-minute recording of the EEG was selected.
- A 2 Hz high-pass filter was applied to all remaining EEG, EOG, and ECG signals.
- Any interference due to eye movements, including blinking, was filtered from the EEG signal by linear regression using the HEOG and VEOG according to the Draper and Smith method [18].
- Some EEG signals contained interference from heart signals appearing as small voltage peaks. These were removed based on the ECG signals recorded; the procedure was carried out according to a modified Pan-Tompkins algorithm and linear regression [19].
2.5. EEG Epochs
2.6. qEEG Markers and Computation
2.7. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Appendix B
Cluster Name | Electrodes |
anterior | Fp1, Fp2, Fp3, F4 |
anterior/temporal | Fp1, Fp2, F7, F3, F4, F8 |
central | Fz, C3, C4, Cz, Pz |
posterior | P3, P4, O1, O2 |
posterior/temporal | P7, P3, P4, P8, O1, O2 |
temporal left | F7, T7, P7 |
temporal right | F8, T8, P8 |
left | Fp1, F3, F7, C3, T7, P3, P7, O1 |
right | Fp2, F4, F8, C4, T8, P4, P8, O2 |
all | Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2 |
References
- Alzheimer’s Association. 2016 Alzheimer’s disease Facts and Figures. Alzheimer Dement. 2016, 12, 459–509. [Google Scholar]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, M. World Alzheimer Report 2015; Alzheimer’s Disease International (ADI): London, UK, 2015. [Google Scholar]
- Braak, H.; Rüb, U.; Schultz, C.; Del Tredici, K. Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases. J. Alzheimer Dis. 2006, 9 (Suppl. 3), 35–44. [Google Scholar]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical Diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Fox, N.C.; Sperling, R.A.; Klunk, W.E. Brain Imaging in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006213. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.E.; Snyder, P.J. Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s diseases. Alzheimer Dement. 2008, 4 (Suppl. 1), S137–S143. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef] [PubMed]
- Dauwels, J.; Vialatte, F.; Cichocki, A. Diagnosis of Alzheimer’s Diseases from EEG Signals: Where Are We Standing? Curr. Alzheimer Res. 2010, 7, 487–505. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Gore, J.C.; Peterson, B.S. Mutual information analysis of the EEG in patients with Alzheimer’s disease. Clin. Neurophysiol. 2001, 112, 827–835. [Google Scholar] [CrossRef]
- Yang, A.C.; Wang, S.J.; Lai, K.L.; Tsai, C.F.; Yang, C.H.; Hwang, J.P.; Lo, M.T.; Huang, N.E.; Peng, C.K.; Fuh, J.L. Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer’s disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 47, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Escudero, J.; Abásolo, D.; Hornero, R.; Espino, P.; López, M. Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 2006, 27, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Takashai, T.; Cho, R.Y.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clin. Neurophysiol. 2010, 121, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Mcbride, J.C.; Zhao, X.; Munro, N.B.; Smith, C.D.; Jicha, G.A.; Hively, L.S.; Broster, L.S.; Schmitt, F.A.; Kryscio, R.J.; Jiang, Y. Spectral and Complexity Analysis of Scalp EEG Characteristics for Mild Cognitive Impairment and Early Alzheimer’s Disease. Comput. Methods Programs Biomed. 2014, 114, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Garn, H.; Waser, M.; Deistler, M.; Benke, T.; Dal-Bianco, P.; Ransmayr, G.; Schmidt, H.; Sanin, G.; Santer, P.; Caravias, G.; et al. Electroencephalographic Complexity Markers Explain Neuropsychological Test Scores in Alzheimer’s Disease. In Proceedings of the 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics, Valencia, Spain, 1–4 June 2014.
- Garn, H.; Waser, M.; Deistler, M.; Benke, T.; Dal-Bianco, P.; Ransmayr, G.; Schmidt, H.; Sanin, G.; Santer, P.; Caravias, G.; et al. Quantitative EEG markers relate to Alzheimer’s diseases severity in the Prospective Dementia Registry Austria (PRODEM). Clin. Neurophysiol. 2015, 126, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State. A Practical Method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; et al. Research Criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef]
- Waser, M.; Garn, H. Removing cardiac interference from the electroencephalogram using a modified Pan-Tompkins algorithm and linear regression. Engineering in Medicine and Biology Society (EMBC). In Proceedings of the 2013 35th Annual International Conference of the IEEE, Osaka, Japan, 3–7 July 2013; pp. 2028–2031.
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1988. [Google Scholar]
- Kaplan, A.Y.; Fingelkurts, A.A.; Fingelkurts, A.A.; Borisov, S.V.; Barkhovsky, B.S. Nonstationary nature of the brain activitiy as revealed by EEG/MEG: Methodological, practical and conceptual challenges. Signal Process. 2005, 85, 2190–2212. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Rezek, A.; Roberts, S.J. Stochastic complexity markers for physiological signal analysis. IEEE Trans. Biomed. Eng. 1998, 45, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71 Pt 1, 021906. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.D.; Wu, C.W.; Lee, K.Y.; Lin, S.G. Modified multiscale entropy for short-term time series analysis. Phys. A Stat. Methods Appl. 2013, 392, 5865–5873. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Tombaugh, T.N.; McIntyre, N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc. 1992, 40, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Ferreira, L.K.; Diniz, B.S.; Forlenza, O.V.; Busatto, G.F.; Zanetti, M.V. Neurostructural predictors of Alzheimer’s disease: A meta-analysis of VBM studies. Neurobiol. Aging 2011, 32, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Abásolo, D.; Hornero, R.; Espino, P.; Álvarez, D.; Poza, J. Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol. Meas. 2006, 27, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Kork, F.; Gentsch, A.; Holthues, J.; Hellweg, R.; Jankowski, V.; Tepel, M.; Zidek, W.; Jankowski, J. A biomarker for severity of Alzheimer’s disease: 1H-NMR resonances in cerebrosprinal fluid correlate with performance in mini-mental-state-exam. Biomarkers 2012, 17, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Benedictus, M.R.; Leeuwis, A.E.; Binnewijzend, M.A.A.; Kuijer, J.P.A.; Scheltens, P.; Barkhof, F.; van der Flier, W.M.; Prins, N.D. Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease. Eur. Radiol. 2016. [Google Scholar] [CrossRef] [PubMed]
Range | Mean | Median | Median Absolute Deviation | |
Demographic information | ||||
Age (years) | 52–88 | 73.5 | 75 | 6 |
Education (years) | 7–20 | 11 | 11 | 2 |
Duration of illness (months) | 2–120 | 25.5 | 23 | 13 |
Sex (m/f) | 29m/50f | |||
Neuropsychological information | ||||
MMSE | 15–26 | 22 | 22 | 2 |
Risk Factors | Yes | No | Unknown | |
Arterial hypertension | 45 | 32 | 2 | |
Diabetes mellitus | 10 | 68 | 1 | |
Coronary heart disease | 8 | 69 | 2 | |
Atrial fibrillation | 5 | 71 | 3 | |
Hypercholesterolemia | 29 | 46 | 4 | |
Never | Earlier | Currently | Unknown | |
Nicotine | 60 | 14 | 2 | 3 |
Alcohol | 52 | 6 | 18 | 3 |
qEEG Markers | Electrode Sites/Clusters Where Model Is Significant According to Holm-Bonferroni Method | Highest R2 | Max Variance a |
---|---|---|---|
ShE | T7 and F7 | T7: 0.32 F7: 0.30 | 0.0042 0.0075 |
TsE | T7 and F7 | T7: 0.37 F7: 0.33 | 0.0075 0.0102 |
SpE | C3, T7, F3, Cz, Fz, C4, Fp1, F7, F4 | C3: 0.33 T7: 0.32 F3: 0.31 | 0.1162 0.1531 0.1023 |
MsE | |||
Cz, C3, Fz, F3, F4, F7, C4, T7, Pz, Fp1, F8 | Cz: 0.38 | 0.0466 | |
All except P8, P7, P3, Fp2, F8, O2, T8, & O1 | C3: 0.39 | 0.1654 | |
MsE modified | |||
C3, Cz, Fz, F3, F4, C4, F7, Pz, T7, Fp1, F8, P3 | C3: 0.37 | 0.0490 | |
All except Fp2, T8, O2, & O1 | C3: 0.42 | 0.0325 | |
All except T8, Fp2, O2, & O1 | C3: 0.40 | 0.0364 | |
All except O1 | T7: 0.37 C3: 0.36 | 0.0374 0.0393 | |
All | C3: 0.39 | 0.0323 | |
All | C3: 0.39 | 0.0274 | |
All except Fp2 & O1 | C3: 0.37 | 0.0220 | |
All except Fp2 | C3: 0.38 | 0.0234 | |
AMI | All electrode sites except T7 & T8 | C3: 0.46 | 0.0029 |
All clusters | central: 0.43 left: 0.42 all: 0.42 | 0.0028 0.0024 0.0020 |
qEEG Markers | Electrode Sites | R2 | p (×10−4) | qEEG Marker a t-Stat p (×10−2) | Significant Co-Predictors b |
---|---|---|---|---|---|
ShE | T7 | 0.32 | 0.079 | 0.007 | A, D, E |
F7 | 0.30 | 0.215 | 0.021 | A, D, E | |
TsE | T7 | 0.37 | 0.005 | 0.000 | A, D, E |
F7 | 0.33 | 0.043 | 0.004 | A, D, E | |
SpE | T7 | 0.32 | 0.082 | 0.007 | A, D, E |
MsE mod. | C3 | 0.42 | 0.000 | 0.000 | A, D, E |
MsE mod. | C3 | 0.41 | 0.000 | 0.000 | A, D, E |
AMI | C3 | 0.46 | 0.000 | 0.000 | A, D, E |
Cz | 0.43 | 0.000 | 0.000 | E | |
F3 | 0.43 | 0.000 | 0.000 | A, E | |
central | 0.43 | 0.000 | 0.000 | E | |
left | 0.42 | 0.000 | 0.000 | A, E |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronel, C.; Garn, H.; Waser, M.; Deistler, M.; Benke, T.; Dal-Bianco, P.; Ransmayr, G.; Seiler, S.; Grossegger, D.; Schmidt, R. Quantitative EEG Markers of Entropy and Auto Mutual Information in Relation to MMSE Scores of Probable Alzheimer’s Disease Patients. Entropy 2017, 19, 130. https://doi.org/10.3390/e19030130
Coronel C, Garn H, Waser M, Deistler M, Benke T, Dal-Bianco P, Ransmayr G, Seiler S, Grossegger D, Schmidt R. Quantitative EEG Markers of Entropy and Auto Mutual Information in Relation to MMSE Scores of Probable Alzheimer’s Disease Patients. Entropy. 2017; 19(3):130. https://doi.org/10.3390/e19030130
Chicago/Turabian StyleCoronel, Carmina, Heinrich Garn, Markus Waser, Manfred Deistler, Thomas Benke, Peter Dal-Bianco, Gerhard Ransmayr, Stephan Seiler, Dieter Grossegger, and Reinhold Schmidt. 2017. "Quantitative EEG Markers of Entropy and Auto Mutual Information in Relation to MMSE Scores of Probable Alzheimer’s Disease Patients" Entropy 19, no. 3: 130. https://doi.org/10.3390/e19030130
APA StyleCoronel, C., Garn, H., Waser, M., Deistler, M., Benke, T., Dal-Bianco, P., Ransmayr, G., Seiler, S., Grossegger, D., & Schmidt, R. (2017). Quantitative EEG Markers of Entropy and Auto Mutual Information in Relation to MMSE Scores of Probable Alzheimer’s Disease Patients. Entropy, 19(3), 130. https://doi.org/10.3390/e19030130