Fractional-Order Grey Prediction Method for Non-Equidistant Sequences
"> Figure 1
<p>Weights of the original data in AGO: (<b>a</b>) 1-AGO; and (<b>b</b>) <span class="html-italic">r</span>-AGO (<span class="html-italic">r</span> = 0.5, <span class="html-italic">k</span> = 9).</p> "> Figure 2
<p>Weights of the original data in <span class="html-italic">r</span>-AGO: (<b>a</b>) <span class="html-italic">r</span> = 0.3, <span class="html-italic">k</span> = 9; and (<b>b</b>) <span class="html-italic">r</span> = −0.3, <span class="html-italic">k</span> = 9.</p> "> Figure 3
<p>Flow diagram of the optimal <span class="html-italic">r</span>-NGM(1,1).</p> "> Figure 4
<p>Errors of the estimated sequence with two methods: (<b>a</b>) Case 1; (<b>b</b>) Case 2; and (<b>c</b>) Case 3.</p> ">
Abstract
:1. Introduction
2. Basic Theories
2.1. r-AGO
2.2. The Traditional NGM(1,1)
3. The Proposed r-NGM(1,1)
3.1. r-NAGO
3.2. Negative Fractional Order
3.3. r-NGM(1,1)
3.4. Optimization of the Accumulated Order
3.5. Statistical Indicators
4. Computational Cases
4.1. Case 1
4.2. Case 2
4.3. Case 3
5. Discussion
5.1. Applicability of the Proposed Method
5.2. The Sampled Interval
5.3. Comparison with Other Method
6. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AGO | Accumulated generating operation |
1-AGO | First-order accumulated generating operation |
r-AGO | Fractional-order accumulated generating operation |
1-NAGO | First-order non-equidistant accumulated generating operation |
r-NAGO | Fractional-order non-equidistant accumulated generating operation |
GM(1,1) | Grey model with first-order differential equation and a single variable |
NGM(1,1) | Non-equidistant grey model with first-order differential equation and single variable |
r-NGM(1,1) | Fractional-order non-equidistant grey model with 1-order differential equation and single variable |
APD | Absolute percent deviation |
RMSE | Root mean square error |
References
- Frida, E. Non-Uniform Sampling in Statistical Signal Processing. Ph.D. Thesis, Linköpings Universitet, Linköping, Sweden, 2007. [Google Scholar]
- Candès, E.; Wakin, M. An introduction to compressive sampling. IEEE Signal Process. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Yang, Y.; Nagarajaiah, S. Output-only modal identification by compressed sensing: Non-uniform low-rate random sampling. Mech. Syst. Signal Process. 2015, 56–57, 15–34. [Google Scholar] [CrossRef]
- Deng, J. Introduction grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Liu, S.; Forrest, J.; Yang, Y. A brief introduction to grey systems theory. Grey Syst. Theory Appl. 2012, 2, 89–104. [Google Scholar] [CrossRef]
- Xiao, X.; Peng, K. Research on generalized non-equidistance GM(1,1) model based on matrix analysis. Grey Syst. Theory Appl. 2011, 1, 87–96. [Google Scholar] [CrossRef]
- Chang, C.-J.; Li, D.-C.; Chen, C.-C.; Chen, C.-S. A forecasting model for small non-equigap data sets considering data weights and occurrence possibilities. Comput. Ind. Eng. 2014, 67, 139–145. [Google Scholar] [CrossRef]
- Dai, W.Z.; Li, J.F. Modeling research on non-equidistance GM(1,1) model. Syst. Eng. Theory Pract. 2005, 25, 89–93. (In Chinese) [Google Scholar]
- Zou, R.B.; Mou, Z.X.; Wei, Y. The non-equidistant grey GRM(1, 1) model and its application. Int. J. Mod. Nonlinear Theory Appl. 2012, 1, 51–54. [Google Scholar] [CrossRef]
- Kang, X.; Wei, Y.; Shen, Y. The class ratio modeling method of non-equigap GM(1,1) model. In Proceedings of the 2009 International Symposium on Information Processing, Huangshan, China, 21–23 August 2009; pp. 286–289.
- Zeng, X.Y.; Shu, L. Non-equidistant GM(1,1) based on accumulated method and its properties. J. Grey Syst. 2012, 15, 139–144. [Google Scholar]
- Wang, Q.F. Parameter estimation of non-equidistant GM(1,1) model based on the Euler formula. In Proceedings of the 2009 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China, 10–12 November 2009; pp. 378–382.
- Li, G.D.; Yamaguchi, D.; Nagai, M. Non-equidistance grey model based on grey interval weighting accumulated generating operation. In Proceedings of the 2006 International Conference on Machine Learning, Models, Technologies & Applications, Las Vegas, NV, USA, 26–29 June 2006; pp. 180–188.
- Shu, H.; Dang, Y.; Xiong, P. Research on characteristics of grey non-equidistant Verhulst model. In Proceedings of the 2011 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China, 15–18 September 2011; pp. 209–212.
- Yong, H.; Wei, Y. The optimization of the non-equigap DGM(2,1) model. J. Grey Syst. 2011, 14, 41–46. [Google Scholar]
- Wang, Z.X.; Dang, Y.G.; Liu, S.F. Non-equidistant GM(1,1) power model and its application in engineering. Chin. Eng. Sci. 2012, 14, 98–102. (In Chinese) [Google Scholar]
- Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer: London, UK, 2010. [Google Scholar]
- Sierociuk, D.; Dzielinski, A. Fractional kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 2006, 16, 129–140. [Google Scholar]
- Valério, D.; Trujillo, J.J.; Rivero, M.; Machado, J.A.T.; Beleanu, D. Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 2013, 222, 1827–1846. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Yao, L.G.; Yana, S.; Liua, D. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Mao, S.; Gao, M.; Xiao, X. Fractional order accumulation time-lag GM(1,N,τ) model and its application. Syst. Eng. Theory Pract. 2015, 35, 430–436. (In Chinese) [Google Scholar]
- Liu, J.; Liu, S.; Fang, Z. Fractional-order reverse accumulation generation GM(1,1) model and its applications. J. Grey Syst. 2015, 27, 52–62. [Google Scholar]
- Yang, B.H.; Zhao, J.S. Fractional order discrete grey GM(1,1) power model and its application. Control Decis. 2015, 30, 1264–1268. (In Chinese) [Google Scholar]
- Wu, L.F.; Liu, S.F.; Cui, W.; Liu, D.-L.; Yao, T.-X. Non-homogenous discrete grey model with fractional-order accumulation. Neural Comput. Appl. 2014, 25, 1215–1221. [Google Scholar] [CrossRef]
- Mao, S.H.; Gao, M.Y.; Xiao, X.P.; Zhu, M. A novel fractional grey system model and its application. Appl. Math. Model. 2016, 40, 5063–5076. [Google Scholar] [CrossRef]
- Meng, W.; Li, Q.; Zeng, B. Study on fractional order grey reducing generation operator. Grey Syst. Theory Appl. 2016, 6, 80–95. [Google Scholar] [CrossRef]
- Shen, Y.; Qin, P. Optimization of grey model with the fractional order accumulated generation. J. Grey Syst. 2014, 17, 127–132. [Google Scholar]
- Ueda, K.; Yamashita, N. On a global complexity bound of the Levenberg-Marquardt method. J. Opt. Theory Appl. 2010, 147, 443–453. [Google Scholar] [CrossRef]
- Luo, Y.X. Non-equidistant step by step optimum new information GM(1,1) and its application. Syst. Eng. Theory Pract. 2010, 30, 2254–2258. (In Chinese) [Google Scholar]
- He, X.; Sun, G.; Li, L. New rules for an accumulated generating operation and inverse accumulated generating operation of gray series. J. Wuhan Univ. Technol. 2002, 24, 26–28. (In Chinese) [Google Scholar]
- Zhang, Z.J.; Liu, J.Y.; Ma, X.W. Modeling forecast of the SIMU error coefficient Based on unequal interval gray model. Missiles Space Veh. 2011, 5, 40–42. (In Chinese) [Google Scholar]
- Svitlana, G. Neural networks performance in exchange rate prediction. Neurocomputing 2016, 172, 446–452. [Google Scholar]
k | tk | nk | X(0) | ||||||
---|---|---|---|---|---|---|---|---|---|
NGM(1,1) | −0.017-NGM(1,1) | 0.995-NGM(1,1) | Ref. [8] | Ref. [9] | Ref. [29] | ||||
1 | 100 | 1 | 560.00 | 560.00 | 560.00 | 560.00 | 560.00 | 560.00 | 562.87 |
2 | 130 | 4 | 557.54 | 557.21 | 556.79 | 555.37 | 554.82 | 557.73 | 551.39 |
3 | 170 | 8 | 536.10 | 538.35 | 537.87 | 538.57 | 536.49 | 538.73 | 535.23 |
4 | 210 | 12 | 516.10 | 517.55 | 517.25 | 518.14 | 516.28 | 517.82 | 518.06 |
5 | 240 | 15 | 505.60 | 500.01 | 501.95 | 500.52 | 499.20 | 500.21 | 504.47 |
6 | 270 | 18 | 486.10 | 485.45 | 486.99 | 485.74 | 485.02 | 485.58 | 490.25 |
7 | 310 | 22 | 467.40 | 469.02 | 467.74 | 468.97 | 469.01 | 469.04 | 470.24 |
8 | 340 | 25 | 453.80 | 453.11 | 454.01 | 452.70 | 453.49 | 453.08 | 454.41 |
9 | 380 | 29 | 436.40 | 437.78 | 436.47 | 436.95 | 438.52 | 437.65 | 432.14 |
Grey Model | Modeling Data | |
---|---|---|
RMSE | APD (%) | |
NGM(1,1) | 2.34 | 0.35 |
−0.017-NGM(1,1) | 1.55 | 0.22 |
0.995-NGM(1,1) | 2.37 | 0.38 |
Ref. [8] | 2.67 | 0.37 |
Ref. [9] | 2.34 | 0.35 |
Ref. [29] | 3.31 | 0.55 |
k | tk | nk | X(0) | ||||
---|---|---|---|---|---|---|---|
−0.13-NGM(1,1) | 0.93-NGM(1,1) | NGM(1,1) | Ref. [30] | ||||
1 | 50 | 1 | 0.7660 | 0.7660 | 0.7660 | 0.7660 | 0.7660 |
2 | 55 | 6 | 0.8192 | 0.8192 | 0.8198 | 0.8311 | 0.8361 |
3 | 65 | 16 | 0.9063 | 0.9062 | 0.9055 | 0.8871 | 0.8949 |
4 | 80 | 31 | 0.9848 | 0.9848 | 0.9852 | 0.9890 | 0.9908 |
5 | 86 | 37 | 0.9976 | 1.0050 | 1.0360 | 1.0826 | 1.0320 |
Grey Model | Modeling Data | Predicting Data | ||
---|---|---|---|---|
RMSE | APD (%) | RMSE | APD (%) | |
−0.13-NGM(1,1) | 0.0001 | 0.002 | 0.007 | 0.75 |
0.93-NGM(1,1) | 0.001 | 0.068 | 0.068 | 3.85 |
NGM(1,1) | 0.013 | 1.33 | 0.085 | 8.52 |
Ref. [30] | 0.011 | 1.31 | 0.034 | 3.45 |
k | tk | nk | X(0) | |||
---|---|---|---|---|---|---|
NGM(1,1) | 1.01-NGM(1,1) | −0.01-NGM(1,1) | ||||
1 | February 2007 | 1 | 2.214517 | 2.214517 | 2.214517 | 2.214517 |
2 | May 2007 | 4 | 2.209514 | 2.191818 | 2.206821 | 2.205258 |
3 | August 2007 | 7 | 2.180164 | 2.190058 | 2.188831 | 2.190021 |
4 | February 2008 | 13 | 2.180396 | 2.187422 | 2.180613 | 2.176111 |
5 | August 2008 | 19 | 2.180480 | 2.183911 | 2.176442 | 2.174253 |
6 | November 2008 | 22 | 2.180469 | 2.181282 | 2.175648 | 2.175123 |
7 | February 2009 | 25 | 2.180391 | 2.179531 | 2.175813 | 2.176498 |
8 | October 2009 | 33 | 2.170843 | 2.176325 | 2.177042 | 2.180976 |
9 | April 2010 | 39 | 2.180387 | 2.172250 | 2.179622 | 2.184262 |
10 | July 2010 | 42 | 2.190126 | 2.169635 | 2.181756 | 2.185791 |
Model | Modeling Data | Predicting Data | ||
---|---|---|---|---|
RMSE | APD (%) | RMSE | APD (%) | |
NGM(1,1) | 0.008 | 0.30 | 0.020 | 0.94 |
1.01-NGM(1,1) | 0.005 | 0.18 | 0.008 | 0.38 |
−0.01-NGM(1,1) | 0.006 | 0.27 | 0.004 | 0.20 |
- | T | nm | Running Time (s) | r | Modeling Data | Predicting Data | ||
---|---|---|---|---|---|---|---|---|
RMSE | APD (%) | RMSE | APD (%) | |||||
Case 1 | 10 | 29 | 1.3 | −0.017 | 1.55 | 0.22 | - | - |
1 | 281 | 5.9 | −0.007 | 1.52 | 0.20 | - | - | |
0.1 | 2801 | 275.6 | −0.004 | 1.48 | 0.21 | - | - | |
Case 2 | 1 | 37 | 2.9 | −0.13 | 0.0001 | 0.01 | 0.008 | 0.75 |
0.1 | 361 | 5.4 | −0.13 | 0.0005 | 0.05 | 0.008 | 0.84 | |
0.01 | 3601 | 148.7 | −0.13 | 0.0006 | 0.05 | 0.008 | 0.85 | |
Case 3 | 1 | 42 | 1.5 | −0.01 | 0.007 | 0.27 | 0.004 | 0.20 |
0.1 | 411 | 4.6 | −0.01 | 0.007 | 0.28 | 0.001 | 0.04 | |
0.01 | 4101 | 338.8 | −0.01 | 0.008 | 0.28 | 0.001 | 0.03 |
- | Case 1 | Case 2 | Case 3 | ||
---|---|---|---|---|---|
r-NGM(1,1) | r | −0.017 | −0.13 | −0.01 | |
Modeling data | RMSE | 1.5531 | 0.0001 | 0.0064 | |
APD (%) | 0.2159 | 0.0037 | 0.2744 | ||
Predicting data | RMSE | - | 0.0074 | 0.0043 | |
APD (%) | - | 0.7418 | 0.1979 | ||
ANN | Number of hidden nodes | 2 | 2 | 4 | |
Modeling data | RMSE | 1.3495 | 0 | 0.0006 | |
APD (%) | 0.1868 | 0 | 0.0252 | ||
Predicting data | RMSE | - | 0.0042 | 0.0025 | |
APD (%) | - | 0.4210 | 0.1146 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; He, B.; Qin, P. Fractional-Order Grey Prediction Method for Non-Equidistant Sequences. Entropy 2016, 18, 227. https://doi.org/10.3390/e18060227
Shen Y, He B, Qin P. Fractional-Order Grey Prediction Method for Non-Equidistant Sequences. Entropy. 2016; 18(6):227. https://doi.org/10.3390/e18060227
Chicago/Turabian StyleShen, Yue, Bo He, and Ping Qin. 2016. "Fractional-Order Grey Prediction Method for Non-Equidistant Sequences" Entropy 18, no. 6: 227. https://doi.org/10.3390/e18060227