Drone Laser Scanning for Modeling Riverscape Topography and Vegetation: Comparison with Traditional Aerial Lidar
"> Figure 1
<p>Location of Stroubles Creek and extent of the drone laser scanning (DLS) surveys.</p> "> Figure 2
<p>Photos of the study area, Stroubles Creek, as taken from the on-site camera tower at the same dates as the lidar surveys: (<b>a</b>) March 2010; (<b>b</b>) December 2016; (<b>c</b>) March 2017.</p> "> Figure 3
<p>ArcGIS ModelBuilder script for pre-processing the aerial laser scanning (ALS) data.</p> "> Figure 4
<p>ArcGIS ModelBuilder script for automatically classifying ground points within the lidar datasets and then classifying vegetation based on height.</p> "> Figure 5
<p>ArcGIS ModelBuilder script for rasterizing a lidar point cloud to create a digital terrain model (DTM) from ground points and a canopy height model (CHM) from vegetation points.</p> "> Figure 6
<p>ArcGIS ModelBuilder script for resampling the drone lidar rasters from 0.1 m to 1 m and calculating DEMs of difference between the drone and aerial lidar rasters.</p> "> Figure 7
<p>Point clouds of the entire reach of Stroubles Creek: (<b>a</b>) 2016 aerial laser scanning (ALS); (<b>b</b>) 2017 drone laser scanning (DLS).</p> "> Figure 8
<p>The entire reach of Stroubles Creek classified by: (<b>a</b>) 2010 aerial laser scanning (ALS); (<b>b</b>) 2016 ALS, showing the change in vegetation since the 2010 stream restoration.</p> "> Figure 9
<p>Point clouds of the concrete bridge over Stroubles Creek: (<b>a</b>) 2016 aerial laser scanning (ALS; 0.488 m spacing); (<b>b</b>) 2017 drone laser scanning (DLS; 0.047 m spacing).</p> "> Figure 10
<p>A 25-m stream cross-sectional profile of ground and unassigned points: (<b>a</b>) 2016 aerial laser scanning (ALS; 0.488 m spacing); (<b>b</b>) 2017 drone laser scanning (DLS; 0.047 m spacing).</p> "> Figure 11
<p>ArcGIS misclassifications for drone laser scanning (DLS) data: (<b>a</b>) points on the streambank misclassified as vegetation; (<b>b</b>) points in dense vegetation misclassified as ground.</p> "> Figure 12
<p>(<b>a</b>) The 1-m digital terrain model (DTM) from 2016 aerial laser scanning (ALS); (<b>b</b>) 0.1-m DTM from 2017 drone laser scanning (DLS); (<b>c</b>) 1-m digital elevation model (DEM) of difference.</p> "> Figure 13
<p>(<b>a</b>) The 1-m canopy height model (CHM) from 2016 aerial laser scanning (ALS); (<b>b</b>) 0.1-m CHM from 2017 drone laser scanning (DLS); (<b>c</b>) 1-m digital elevation model (DEM) of difference.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Lidar Data Collection
2.3. Lidar Data Processing
3. Results
3.1. Lidar Data Statistics
3.2. Classified Lidar Data
3.3. Rasterized Lidar Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dietrich, J.T. Riverscape mapping with helicopter-based structure-from-motion photogrammetry. Geomorphology 2016, 252, 144–157. [Google Scholar] [CrossRef]
- Fausch, K.D.; Torgersen, C.E.; Baxter, C.V.; Li, H.W. Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience 2002, 52, 483–498. [Google Scholar] [CrossRef]
- Florinsky, I.V. An illustrated introduction to general geomorphometry. Prog. Phys. Geogr. Earth Environ. 2017, 41, 723–752. [Google Scholar] [CrossRef]
- Buffington, J.M.; Montgomery, D.R.; Greenberg, H.M. Basin-scale availability of salmonid spawning gravel as influenced by channel type and hydraulic roughness in mountain catchments. Can. J. Fish. Aquat. Sci. 2004, 61, 2085–2096. [Google Scholar] [CrossRef]
- Resop, J.P.; Kozarek, J.L.; Hession, W.C. Terrestrial laser scanning for delineating in-stream boulders and quantifying habitat complexity measures. Photogramm. Eng. Remote Sens. 2012, 78, 363–371. [Google Scholar] [CrossRef]
- Kozarek, J.L.; Hession, W.C.; Dolloff, C.A.; Diplas, P. Hydraulic complexity metrics for evaluating in-stream brook trout habitat. J. Hydraul. Eng. 2010, 136, 1067–1076. [Google Scholar] [CrossRef]
- Arcement, G.J.; Schneider, V.R. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and flood Plains; United States Geological Survey: Denver, CO, USA, 1989; pp. 1–38.
- Heritage, G.L.; Milan, D.J. Terrestrial laser scanning of grain roughness in a gravel-bed river. Geomorphology 2009, 113, 4–11. [Google Scholar] [CrossRef]
- Hession, W.; Curran, J. The impacts of vegetation on roughness in fluvial systems. In Treatise on Geomorphology; Shroder, J., Butler, D.R., Hupp, C.R., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 12, pp. 75–93. [Google Scholar]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1959; ISBN 978-0-07-010776-2. [Google Scholar]
- Wolman, M.G. A method of sampling coarse river-bed material. Eos Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Pappenberger, F.; Beven, K.; Horritt, M.; Blazkova, S. Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J. Hydrol. 2005, 302, 46–69. [Google Scholar] [CrossRef]
- Resop, J.P.; Hession, W.C.; Wynn-Thompson, T. Quantifying the parameter uncertainty in the cross-sectional dimensions for a stream restoration design of a gravel-bed stream. J. Soil Water Conserv. 2014, 69, 306–315. [Google Scholar] [CrossRef]
- Clubb, F.J.; Mudd, S.M.; Milodowski, D.T.; Valters, D.A.; Slater, L.J.; Hurst, M.D.; Limaye, A.B. Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds. Earth Surf. Dyn. 2017, 5, 369–385. [Google Scholar] [CrossRef]
- McKean, J.; Nagel, D.; Tonina, D.; Bailey, P.; Wright, C.W.; Bohn, C.; Nayegandhi, A. Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR. Remote Sens. 2009, 1, 1065–1096. [Google Scholar] [CrossRef]
- Heritage, G.; Hetherington, D. Towards a protocol for laser scanning in fluvial geomorphology. Earth Surf. Process. Landf. 2007, 32, 66–74. [Google Scholar] [CrossRef]
- Rosser, N.J.; Petley, D.N.; Lim, M.; Dunning, S.A.; Allison, R.J. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q. J. Eng. Geol. Hydrogeol. 2005, 38, 363–375. [Google Scholar] [CrossRef]
- Resop, J.P.; Hession, W.C. Terrestrial laser scanning for monitoring streambank retreat: Comparison with traditional surveying techniques. J. Hydraul. Eng. 2010, 136, 794–798. [Google Scholar] [CrossRef]
- Saarinen, N.; Vastaranta, M.; Vaaja, M.; Lotsari, E.; Jaakkola, A.; Kukko, A.; Kaartinen, H.; Holopainen, M.; Hyyppä, H.; Alho, P. Area-based approach for mapping and monitoring riverine vegetation using mobile laser scanning. Remote Sens. 2013, 5, 5285–5303. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Dandois, J.P.; Ellis, E.C. Remote sensing of vegetation structure using computer vision. Remote Sens. 2010, 2, 1157–1176. [Google Scholar] [CrossRef]
- Woodget, A.S.; Austrums, R.; Maddock, I.P.; Habit, E. Drones and digital photogrammetry: From classifications to continuums for monitoring river habitat and hydromorphology. Wiley Interdiscip. Rev. Water 2017, 4, 1–20. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Jaakkola, A.; Hyyppä, J.; Kukko, A.; Yu, X.; Kaartinen, H.; Lehtomäki, M.; Lin, Y. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J. Photogramm. Remote Sens. 2010, 65, 514–522. [Google Scholar] [CrossRef]
- Lin, Y.; Hyyppa, J.; Jaakkola, A. Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geosci. Remote Sens. Lett. 2011, 8, 426–430. [Google Scholar] [CrossRef]
- Benham, B.; Brannan, K.; Dillaha, T.; Mostaghimi, S.; Wagner, R.; Wynn, J.; Yagow, G.; Zeckoski, R. Benthic TMDL for Stroubles Creek in Montgomery County, Virginia; Virginia Departments of Environmental Quality and Conservation and Recreation: Richmond, VA, USA, 2003; pp. 1–83.
- Wynn, T.; Hession, W.C.; Yagow, G. Stroubles Creek Stream Restoration; Virginia Department of Conservation and Recreation: Richmond, VA, USA, 2010; pp. 1–19.
- Wynn-Thompson, T.; Hession, W.C.; Scott, D. StREAM Lab at Virginia Tech. Resour. Mag. 2012, 19, 8–9. [Google Scholar]
- VGIN. LiDAR Campaign (Blacksburg, VA) Report of Survey; Virginia Information Technologies Agency: Chester, VA, USA, 2010; pp. 1–13.
- VITA Elevation—LIDAR—VITA. Available online: https://www.vita.virginia.gov/integrated-services/vgin-geospatial-services/elevation---lidar/ (accessed on 28 July 2016).
- Isenburg, M. LASzip: Lossless compression of LiDAR data. Photogramm. Eng. Remote Sens. 2013, 79, 209–217. [Google Scholar] [CrossRef]
- Hodgson, M.E.; Bresnahan, P. Accuracy of airborne lidar-derived elevation: Empirical assessment and error budget. Photogramm. Eng. Remote Sens. 2004, 70, 331–339. [Google Scholar] [CrossRef]
- Stoker, J.M.; Abdullah, Q.A.; Nayegandhi, A.; Winehouse, J. Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program. Remote Sens. 2016, 8, 767. [Google Scholar] [CrossRef]
- Glennie, C.; Brooks, B.; Ericksen, T.; Hauser, D.; Hudnut, K.; Foster, J.; Avery, J. Compact multipurpose mobile laser scanning system—Initial tests and results. Remote Sens. 2013, 5, 521–538. [Google Scholar] [CrossRef]
- Torresan, C.; Berton, A.; Carotenuto, F.; Chiavetta, U.; Miglietta, F.; Zaldei, A.; Gioli, B. Development and performance assessment of a low-cost UAV laser scanner system (LasUAV). Remote Sens. 2018, 10, 1094. [Google Scholar] [CrossRef]
- von Bueren, S.K.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.P.; Yule, I.J. Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences 2015, 12, 163–175. [Google Scholar] [CrossRef]
- Mondino, E.B.; Gajetti, M. Preliminary considerations about costs and potential market of remote sensing from UAV in the Italian viticulture context. Eur. J. Remote Sens. 2017, 50, 310–319. [Google Scholar] [CrossRef] [Green Version]
- Cracknell, A.P. UAVs: Regulations and law enforcement. Int. J. Remote Sens. 2017, 38, 3054–3067. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Meng, F.-R.; Arp, P. Stream network modelling using lidar and photogrammetric digital elevation models: A comparison and field verification. Hydrol. Process. 2008, 22, 1747–1754. [Google Scholar] [CrossRef]
- Dubayah, R.O.; Swatantran, A.; Huang, W.; Duncanson, L.; Johnson, K.; Tang, H.; Dunne, J.O.; Hurtt, G.C. LiDAR Derived Biomass, Canopy Height and Cover for Tri-State (MD, PA, DE) Region; ORNL DAAC: Oak Ridge, TN, USA, 2018. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1538 (accessed on 18 September 2018).
- Zhao, K.; Popescu, S. Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens. Environ. 2009, 113, 1628–1645. [Google Scholar] [CrossRef]
ALS | DLS | ||
---|---|---|---|
Date Collected | March 2010 | December 2016 | March/April 2017 |
Point Density (points/m2) | 2.35 | 4.20 | 455 |
Point Spacing (m) | 0.652 | 0.488 | 0.047 |
Total Points | 468,090 | 849,024 | 90,427,968 |
Unassigned | 401 (0%) | 1019 (0%) | 30,993,692 (34%) |
Ground | 458,515 (98%) | 745,062 (88%) | 47,507,039 (53%) |
Vegetation | 9012 (2%) | 102,615 (12%) | 11,872,441 (13%) |
Building | 61 (0%) | 328 (0%) | 53,966 (0%) |
Noise | 101 (0%) | 0 (0%) | 830 (0%) |
Feature | Metric | Observed (m) | 2016 ALS Measured (m) | 2016 ALS Error (%) | 2017 DLS Measured (m) | 2017 DLS Error (%) |
---|---|---|---|---|---|---|
Concrete Bridge | Width | 3.57 | 3.34 | 6.37% | 3.60 | 0.93% |
Length | 8.92 | 7.54 | 15.47% | 9.23 | 3.53% | |
Fence Post (Left Bank) | Height | 1.62 | 1.49 | 8.15% | 1.54 | 5.19% |
Fence Post (Right Bank) | Height | 1.72 | 1.32 | 23.49% | 1.59 | 7.67% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resop, J.P.; Lehmann, L.; Hession, W.C. Drone Laser Scanning for Modeling Riverscape Topography and Vegetation: Comparison with Traditional Aerial Lidar. Drones 2019, 3, 35. https://doi.org/10.3390/drones3020035
Resop JP, Lehmann L, Hession WC. Drone Laser Scanning for Modeling Riverscape Topography and Vegetation: Comparison with Traditional Aerial Lidar. Drones. 2019; 3(2):35. https://doi.org/10.3390/drones3020035
Chicago/Turabian StyleResop, Jonathan P., Laura Lehmann, and W. Cully Hession. 2019. "Drone Laser Scanning for Modeling Riverscape Topography and Vegetation: Comparison with Traditional Aerial Lidar" Drones 3, no. 2: 35. https://doi.org/10.3390/drones3020035
APA StyleResop, J. P., Lehmann, L., & Hession, W. C. (2019). Drone Laser Scanning for Modeling Riverscape Topography and Vegetation: Comparison with Traditional Aerial Lidar. Drones, 3(2), 35. https://doi.org/10.3390/drones3020035