A Survey of Blockchain Applicability, Challenges, and Key Threats
<p>Evolution of blockchain-related papers published over time. Source: own illustration, based on the findings related to article [<a href="#B2-computers-13-00223" class="html-bibr">2</a>].</p> "> Figure 2
<p>Resource-identification methodology.</p> "> Figure 3
<p>Components of the model proposed in the article [<a href="#B19-computers-13-00223" class="html-bibr">19</a>].</p> "> Figure 4
<p>Components of the model proposed in the article [<a href="#B20-computers-13-00223" class="html-bibr">20</a>].</p> "> Figure 5
<p>Components of the model proposed in the article [<a href="#B25-computers-13-00223" class="html-bibr">25</a>].</p> "> Figure 6
<p>Components of the model proposed in the article [<a href="#B23-computers-13-00223" class="html-bibr">23</a>].</p> "> Figure 7
<p>Components of the model proposed in the article [<a href="#B35-computers-13-00223" class="html-bibr">35</a>].</p> "> Figure 8
<p>Components of the model proposed in the article [<a href="#B38-computers-13-00223" class="html-bibr">38</a>].</p> "> Figure 9
<p>The architecture of the model proposed in the article [<a href="#B39-computers-13-00223" class="html-bibr">39</a>].</p> "> Figure 10
<p>Components of the model proposed in the article [<a href="#B21-computers-13-00223" class="html-bibr">21</a>].</p> "> Figure 11
<p>The percent of highlighted challenges in the education domain. Own illustration, based on the results from [<a href="#B40-computers-13-00223" class="html-bibr">40</a>].</p> "> Figure 12
<p>The types of IoD blockchain-powered schemes described in [<a href="#B33-computers-13-00223" class="html-bibr">33</a>].</p> "> Figure 13
<p>Sharding technique.</p> "> Figure 14
<p>Verification tools for smart contracts.</p> "> Figure 15
<p>Oracle communication.</p> ">
Abstract
:1. Introduction
- It emphasizes the different applications that have leveraged blockchain technology across diverse sectors and society in general, showing the main benefits and challenges;
- It offers an identification of the main challenges, and key threats to blockchain technology adoption, and a broad categorization of the challenges, to deliver a clearer overview and better understanding;
- It suggests possible solutions and future research directions for areas that need further exploration.
2. Applicability
2.1. IoT Environments
2.2. Healthcare
2.3. Cybersecurity and Data Management
2.4. Supply Chain
2.5. Smart Transportation
2.6. Education
2.7. Digital and Financial Management
2.8. Internet of Drones
2.9. Maritime Shipping
2.10. Distributed Agile Software Development
3. Challenges and Key Threats
3.1. Technical and Performance Issues
3.2. Security and Protocol Integrity
3.3. Operational and Global Management
3.4. Legal and Regulatory Compliance
3.5. Adoption and Knowledge Barriers
4. Discussion and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
AI | Artificial Intelligence |
ACE-BC | Access Control-Enabled Blockchain |
BSKM | Blockchain-based Special Key Security Model |
V2X | Vehicle-to-Everything |
NFT | Non-Fungible Token |
JIT | Just-in-Time |
PoAh | Proof of Authentication |
PoT | Proof of Trust |
PoW | Proof of Work |
DBFT | Delegated Byzantine Fault Tolerance |
HPoC | Hierarchical Proof of Capability |
IPFS | InterPlanetary File System |
CDN | Content Delivery Network |
UTXO | Unspent Transaction Output |
ITS | Intelligent Transportation Systems |
IoD | Internet of Drones |
PoC | Proof of Concept |
DASD | Distributed Agile Software Development |
ARP | Address Resolution Protocols |
SGX | Intel Software Guard Extensions |
MDLDP | Multiple Disturbance of Local Differential Privacy |
EHR | Electronic Health Records |
GDPR | General Data Protection Regulation |
HL7 | Health Level 7 |
FHIR | Fast Healthcare Interoperability Resources |
CCPA | California Consumer Privacy Act |
HIPAA | Health Insurance Portability and Accountability Act |
References
- Adere, E.M. Blockchain in Healthcare and IoT: A Systematic Literature Review. Array 2022, 14, 100139. [Google Scholar] [CrossRef]
- López-Sorribes, S.; Rius-Torrentó, J.; Solsona-Tehàs, F. A Bibliometric Review of the Evolution of Blockchain Technologies. Sensors 2023, 23, 3167. [Google Scholar] [CrossRef] [PubMed]
- Taherdoost, H. Privacy and Security of Blockchain in Healthcare: Applications, Challenges, and Future Perspectives. SCI 2023, 5, 41. [Google Scholar] [CrossRef]
- Ekinci, F.; Guzel, M.S.; Acici, K.; Asuroglu, T. The Future of Microreactors: Technological Advantages, Economic Challenges, and Innovative Licensing Solutions with Blockchain. Appl. Sci. 2024, 14, 6673. [Google Scholar] [CrossRef]
- Echikr, A.; Yachir, A.; Kerrache, C.A.; Sahraoui, Z. Exploring the Potential of Blockchain in Internet of Robotic Things: Advancements, Challenges, and Future Directions. In Proceedings of the 6th International Conference on Networking and Advanced Systems, (ICNAS 2023), Algiers, Algeria, 21–23 October 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Mandal, M.; Chishti, M.S.; Banerjee, A. Investigating Layer-2 Scalability Solutions for Blockchain Applications. In Proceedings of the 2023 IEEE International Conference on High Performance Computing and Communications, Data Science and Systems, Smart City and Dependability in Sensor, Cloud and Big Data Systems and Application, (HPCC/DSS/SmartCity/DependSys 2023), Melbourne, Australia, 17–21 December 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023; pp. 710–717. [Google Scholar] [CrossRef]
- Mao, H.; Nie, T.; Sun, H.; Shen, D.; Yu, G. A Survey on Cross-Chain Technology: Challenges, Development, and Prospect. IEEE Access 2023, 11, 45527–45546. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Jena, D.; Panda, S.S.; Sobhanayak, S. Blockchain Technology: A Survey on Applications and Security Privacy Challenges. Internet Things 2019, 8, 100107. [Google Scholar] [CrossRef]
- Das, S.; Mohanta, B.K.; Jena, D. A State-of-the-Art Security and Attacks Analysis in Blockchain Applications Network. Int. J. Commun. Netw. Distrib. Syst. 2022, 28, 199–218. [Google Scholar] [CrossRef]
- Guru, D.; Perumal, S.; Varadarajan, V. Approaches towards Blockchain Innovation: A Survey and Future Directions. Electronics 2021, 10, 1219. [Google Scholar] [CrossRef]
- Lai, Y.; Yang, J.; Liu, M.; Li, Y.; Li, S. Web3: Exploring Decentralized Technologies and Applications for the Future of Empowerment and Ownership. Blockchains 2023, 1, 111–131. [Google Scholar] [CrossRef]
- Habib, G.; Sharma, S.; Ibrahim, S.; Ahmad, I.; Qureshi, S.; Ishfaq, M. Blockchain Technology: Benefits, Challenges, Applications, and Integration of Blockchain Technology with Cloud Computing. Future Internet 2022, 14, 341. [Google Scholar] [CrossRef]
- Moosavi, N.; Taherdoost, H. Blockchain Technology Application in Security: A Systematic Review. Blockchains 2023, 1, 58–72. [Google Scholar] [CrossRef]
- Douaioui, K.; Benmoussa, O. Insights into Industrial Efficiency: An Empirical Study of Blockchain Technology. Big Data Cogn. Comput. 2024, 8, 62. [Google Scholar] [CrossRef]
- Rawat, D.B.; Chaudhary, V.; Doku, R. Blockchain Technology: Emerging Applications and Use Cases for Secure and Trustworthy Smart Systems. J. Cybersecur. Priv. 2021, 1, 4–18. [Google Scholar] [CrossRef]
- Johar, S.; Ahmad, N.; Asher, W.; Cruickshank, H.; Durrani, A. Research and Applied Perspective to Blockchain Technology: A Comprehensive Survey. Appl. Sci. 2021, 11, 6252. [Google Scholar] [CrossRef]
- Alshamsi, M.; Al-Emran, M.; Shaalan, K. A Systematic Review on Blockchain Adoption. Appl. Sci. 2022, 12, 4245. [Google Scholar] [CrossRef]
- Al-Megren, S.; Alsalamah, S.; Altoaimy, L.; Alsalamah, H.; Soltanisehat, L.; Almutairi, E.; Sandy Pentland, A. Blockchain Use Cases in Digital Sectors: A Review of the Literature. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; IEEE: New York, NY, USA, 2018; pp. 1417–1424. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, D.; Han, G.; Zhu, W.; Wang, X. A Blockchain-Based Privacy-Preserving and Fair Data Transaction Model in IoT. Appl. Sci. 2023, 13, 12389. [Google Scholar] [CrossRef]
- Ullah, I.; Havinga, P.J.M. Governance of a Blockchain-Enabled IoT Ecosystem: A Variable Geometry Approach. Sensors 2023, 23, 9031. [Google Scholar] [CrossRef]
- Adamashvili, N.; Zhizhilashvili, N.; Tricase, C. The Integration of the Internet of Things, Artificial Intelligence, and Blockchain Technology for Advancing the Wine Supply Chain. Computers 2024, 13, 72. [Google Scholar] [CrossRef]
- Khanzada, T.J.S.; Shahid, M.F.; Mutahhar, A.; Aslam, M.A.; Ashari, R.B.; Jamal, S.; Nooruddin, M.; Siddiqui, S. Authenticity, and Approval Framework for Bus Transportation Based on Blockchain 2.0 Technology. Appl. Sci. 2023, 13, 11323. [Google Scholar] [CrossRef]
- Alam, S.; Bhatia, S.; Shuaib, M.; Khubrani, M.M.; Alfayez, F.; Malibari, A.A.; Ahmad, S. An Overview of Blockchain and IoT Integration for Secure and Reliable Health Records Monitoring. Sustainability 2023, 15, 5660. [Google Scholar] [CrossRef]
- Alharbi, A. Applying Access Control Enabled Blockchain (ACE-BC) Framework to Manage Data Security in the CIS System. Sensors 2023, 23, 3020. [Google Scholar] [CrossRef] [PubMed]
- Dener, M.; Orman, A. BBAP-WSN: A New Blockchain-Based Authentication Protocol for Wireless Sensor Networks. Appl. Sci. 2023, 13, 1526. [Google Scholar] [CrossRef]
- Zubaydi, H.D.; Varga, P.; Molnár, S. Leveraging Blockchain Technology for Ensuring Security and Privacy Aspects in Internet of Things: A Systematic Literature Review. Sensors 2023, 23, 788. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, M.N.M.; Khwaja, A.A.; Nadeem, A.; Ahmad, H.F.; Khan, M.K.; Hanif, M.A.; Song, H.; Alshamari, M.; Cao, Y. A Survey on Blockchain Technology: Evolution, Architecture and Security. IEEE Access 2021, 9, 61048–61073. [Google Scholar] [CrossRef]
- Singh, S.; Sanwar Hosen, A.S.M.; Yoon, B. Blockchain Security Attacks, Challenges, and Solutions for the Future Distributed IoT Network. IEEE Access 2021, 9, 13938–13959. [Google Scholar] [CrossRef]
- Oumaima, F.; Karim, Z.; Abdellatif, E.G.; Mohammed, B. A Survey on Blockchain and Artificial Intelligence Technologies for Enhancing Security and Privacy in Smart Environments. IEEE Access 2022, 10, 93168–93186. [Google Scholar] [CrossRef]
- Rao, P.M.; Jangirala, S.; Pedada, S.; Das, A.K.; Park, Y. Blockchain Integration for IoT-Enabled V2X Communications: A Comprehensive Survey, Security Issues and Challenges. IEEE Access 2023, 11, 54476–54494. [Google Scholar] [CrossRef]
- Alhazmi, H.E.; Eassa, F.E.; Sandokji, S.M. Towards Big Data Security Framework by Leveraging Fragmentation and Blockchain Technology. IEEE Access 2022, 10, 10768–10782. [Google Scholar] [CrossRef]
- Islam, S.; Islam, M.J.; Hossain, M.; Noor, S.; Kwak, K.S.; Islam, S.M.R. A Survey on Consensus Algorithms in Blockchain-Based Applications: Architecture, Taxonomy, and Operational Issues. IEEE Access 2023, 11, 39066–39082. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Yin, X.; Wang, X.; Hu, J. A Review on Security Issues and Solutions of the Internet of Drones. IEEE Open J. Comput. Soc. 2022, 3, 96–110. [Google Scholar] [CrossRef]
- Hu, J.; Huang, K.; Bian, G.; Cui, Y. Redact-Chain for Health: A Scheme Based on Redactable Blockchain for Managing Shared Healthcare Data. Electronics 2023, 12, 4240. [Google Scholar] [CrossRef]
- Islam, M.S.; Ameedeen, M.A.B.; Rahman, M.A.; Ajra, H.; Ismail, Z.B. Healthcare-Chain: Blockchain-Enabled Decentralized Trustworthy System in Healthcare Management Industry 4.0 with Cyber Safeguard. Computers 2023, 12, 46. [Google Scholar] [CrossRef]
- Zukaib, U.; Cui, X.; Hassan, M.; Harris, S.; Hadi, H.J.; Zheng, C. Blockchain and Machine Learning in EHR Security: A Systematic Review. IEEE Access 2023, 11, 130230–130256. [Google Scholar] [CrossRef]
- Hiwale, M.; Walambe, R.; Potdar, V.; Kotecha, K. A Systematic Review of Privacy-Preserving Methods Deployed with Blockchain and Federated Learning for the Telemedicine. Healthc. Anal. 2023, 3, 100192. [Google Scholar] [CrossRef]
- Bakir, C. New Blockchain Based Special Keys Security Model with Path Compression Algorithm for Big Data. IEEE Access 2022, 10, 94738–94753. [Google Scholar] [CrossRef]
- Patel, S.; Sahoo, A.; Mohanta, B.K.; Panda, S.S.; Jena, D. DAuth: A Decentralized Web Authentication System Using Ethereum Based Blockchain. In Proceedings of the 2019 International Conference on Vision towards Emerging Trends in Communication and Networking (ViTECoN), Vellore, India, 30–31 March 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Mohammad, A.; Vargas, S. Challenges of Using Blockchain in the Education Sector: A Literature Review. Appl. Sci. 2022, 12, 6380. [Google Scholar] [CrossRef]
- Nguyen, S.; Leman, A.; Xiao, Z.; Fu, X.; Zhang, X.; Wei, X.; Zhang, W.; Li, N.; Zhang, W.; Qin, Z. Blockchain-Powered Incentive System for JIT Arrival Operations and Decarbonization in Maritime Shipping. Sustainability 2023, 15, 15686. [Google Scholar] [CrossRef]
- Farooq, M.S.; Kalim, Z.; Qureshi, J.N.; Rasheed, S.; Abid, A. A Blockchain-Based Framework for Distributed Agile Software Development. IEEE Access 2022, 10, 17977–17995. [Google Scholar] [CrossRef]
- Chen, X.; He, S.; Sun, L.; Zheng, Y.; Wu, C.Q. A Survey of Consortium Blockchain and Its Applications. Cryptography 2024, 8, 12. [Google Scholar] [CrossRef]
- Malla, T.B.; Bhattarai, A.; Parajuli, A.; Shrestha, A.; Chhetri, B.B.; Chapagain, K. Status, Challenges and Future Directions of Blockchain Technology in Power System: A State of Art Review. Energies 2022, 15, 8571. [Google Scholar] [CrossRef]
- Fotiou, N.; Pittaras, I.; Siris, V.A.; Polyzos, G.C.; Anton, P. A Privacy-Preserving Statistics Marketplace Using Local Differential Privacy and Blockchain: An Application to Smart-Grid Measurements Sharing. Blockchain Res. Appl. 2021, 2, 100022. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Yang, M.; Wang, T.; Wang, N.; Lyu, L.; Niyato, D.; Lam, K.Y. Local Differential Privacy-Based Federated Learning for Internet of Things. IEEE Internet Things J. 2021, 8, 8836–8853. [Google Scholar] [CrossRef]
- Asokan, N.; Schunter, M.; Waidner, M. Optimistic protocols for fair exchange. In Proceedings of the 4th ACM Conference on Computer and Communications Security, Zurich, Switzerland, 1–4 April 1997; pp. 7–17. [Google Scholar]
- Yang, X.; Liu, M.; Au, M.H.; Luo, X.; Ye, Q. Efficient Verifiably Encrypted ECDSA-Like Signatures and Their Applications. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1573–1582. [Google Scholar] [CrossRef]
- Desmedt, Y. Society and group oriented cryptography: A new concept. In Proceedings of the Conference on the Theory and Application of Cryptographic Techniques, Santa Barbara, CA, USA, 16–20 August 1987; Springer: Berlin/Heidelberg, Germany, 1987; pp. 120–127. [Google Scholar]
- Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [Google Scholar] [CrossRef]
- de Haro-Olmo, F.J.; Varela-Vaca, Á.J.; Álvarez-Bermejo, J.A. Blockchain from the Perspective of Privacy and Anonymisation: A Systematic Literature Review. Sensors 2020, 20, 7171. [Google Scholar] [CrossRef] [PubMed]
- Peter, L. The Variable Geometry Approach to International Economic Integration. In Proceedings of the Seventh APEF Conference, Indonesia, Iran, 3–5 November 2008; University of Melbourne: Melbourne, Australia, 2008. [Google Scholar]
- Puthal, D.; Mohanty, S.P.; Nanda, P.; Kougianos, E.; Das, G. Proof-of-authentication for scalable blockchain in resource-constrained distributed systems. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics, Berlin, Germany, 8–11 September 2019; pp. 1–5. [Google Scholar]
- Puthal, D.; Mohanty, S.P. Proof of Authentication: IoT-Friendly Blockchains. IEEE Potentials 2019, 38, 26–29. [Google Scholar] [CrossRef]
- Aslam, S.; Tošić, A.; Mrissa, M. Secure and Privacy-Aware Blockchain Design: Requirements, Challenges and Solutions. J. Cybersecur. Priv. 2021, 1, 164–194. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Z.; Chen, X.; Wang, Y.; Tang, C. The DAO Attack Paradoxes in Propositional Logic. In Proceedings of the 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November 2017; pp. 1743–1746. [Google Scholar] [CrossRef]
- IOTA. Available online: https://www.iota.org/ (accessed on 13 June 2024).
- Derler, D.; Samelin, K.; Slamanig, D. Bringing Order to Chaos: The Case of Collision-Resistant Chameleon-Hashes. J. Cryptol. 2024, 37, 1–44. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Wu, Q.; Mu, Y.; Rezaeibagha, F. Redactable Blockchain-Enabled Hierarchical Access Control Framework for Data Sharing in Electronic Medical Records. IEEE Syst. J. 2023, 17, 1962–1973. [Google Scholar] [CrossRef]
- Abdel Hakeem, S.A.; Kim, H. Centralized Threshold Key Generation Protocol Based on Shamir Secret Sharing and HMAC Authentication. Sensors 2022, 22, 331. [Google Scholar] [CrossRef]
- Wang, C.; Tan, X.; Yao, C.; Gu, F.; Shi, F.; Cao, H. Trusted Blockchain-Driven IoT Security Consensus Mechanism. Sustainability 2022, 14, 5200. [Google Scholar] [CrossRef]
- Maimuţ, D.; Matei, A.C. Speeding-Up Elliptic Curve Cryptography Algorithms. Mathematics 2022, 10, 3676. [Google Scholar] [CrossRef]
- Lahraoui, Y.; Lazaar, S.; Amal, Y.; Nitaj, A. Securing Data Exchange with Elliptic Curve Cryptography: A Novel Hash-Based Method for Message Mapping and Integrity Assurance. Cryptography 2024, 8, 23. [Google Scholar] [CrossRef]
- Zhou, S.; Li, K.; Xiao, L.; Cai, J.; Liang, W.; Castiglione, A. A Systematic Review of Consensus Mechanisms in Blockchain. Mathematics 2023, 11, 2248. [Google Scholar] [CrossRef]
- Sapra, N.; Shaikh, I.; Dash, A. Impact of Proof of Work (PoW)-Based Blockchain Applications on the Environment: A Systematic Review and Research Agenda. J. Risk Financ. Manag. 2023, 16, 218. [Google Scholar] [CrossRef]
- Franck, L.D.; Ginja, G.A.; Carmo, J.P.; Afonso, J.A.; Luppe, M. Custom ASIC Design for SHA-256 Using Open-Source Tools. Computers 2024, 13, 9. [Google Scholar] [CrossRef]
- Algredo-Badillo, I.; Morales-Sandoval, M.; Medina-Santiago, A.; Hernández-Gracidas, C.A.; Lobato-Baez, M.; Morales-Rosales, L.A. A SHA-256 Hybrid-Redundancy Hardware Architecture for Detecting and Correcting Errors. Sensors 2022, 22, 5028. [Google Scholar] [CrossRef]
- Fatima, S.; Rehman, T.; Fatima, M.; Khan, S.; Ali, M.A. Comparative Analysis of Aes and Rsa Algorithms for Data Security in Cloud Computing. Eng. Proc. 2022, 20, 14. [Google Scholar] [CrossRef]
- Adeniyi, E.A.; Falola, P.B.; Maashi, M.S.; Aljebreen, M.; Bharany, S. Secure Sensitive Data Sharing Using RSA and ElGamal Cryptographic Algorithms with Hash Functions. Information 2022, 13, 442. [Google Scholar] [CrossRef]
- Lee, G.H.; Shin, S.Y. Federated Learning on Clinical Benchmark Data: Performance Assessment. J. Med. Internet Res. 2020, 22, e20891. [Google Scholar] [CrossRef]
- Solve.Care. Available online: https://solve.care/ (accessed on 13 June 2024).
- Jemihin, Z.B.; Tan, S.F.; Chung, G.C. Attribute-Based Encryption in Securing Big Data from Post-Quantum Perspective: A Survey. Cryptography 2022, 6, 40. [Google Scholar] [CrossRef]
- Huang, M.; Liu, Y.; Yang, B.; Zhao, Y.; Zhang, M. Efficient Revocable Attribute-Based Encryption with Data Integrity and Key Escrow-Free. Information 2024, 15, 32. [Google Scholar] [CrossRef]
- BAKIR, Ç.; HAKKOYMAZ, V. Distributed Environment Modeling Using Path Compression Algorithm. Int. J. Appl. Math. Electron. Comput. 2020, 8, 226–231. [Google Scholar] [CrossRef]
- Memmi, G.; Kapusta, K.; Qiu, H. Data Protection: Combining Fragmentation, Encryption, and Dispersion. In Proceedings of the 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC), Shanghai, China, 5–7 August 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Heni, H.; Abdallah, M.B.; Gargouri, F. Combining Fragmentation and Encryption to Ensure Big Data at Rest Security. In Hybrid Intelligent Systems, 17th International Conference on Hybrid Intelligent Systems (HIS 2017) held in Delhi, India, 14-16 December 2017; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2018; Volume 734, pp. 177–185. [Google Scholar] [CrossRef]
- Singh, G. A Study of Encryption Algorithms (RSA, DES, 3DES and AES) for Information Security. Int. J. Comput. Appl. 2013, 67, 33–38. [Google Scholar] [CrossRef]
- Acronis. Available online: https://www.acronis.com/en-eu/ (accessed on 13 June 2024).
- Abuhashim, A.; Tan, C.C. Smart Contract Designs on Blockchain Applications. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Montes, J.M.; Ramirez, C.E.; Gutierrez, M.C.; Larios, V.M. Smart Contracts for Supply Chain Applicable to Smart Cities Daily Operations. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 565–570. [Google Scholar] [CrossRef]
- IBM Food Trust. Available online: https://www.ibm.com/products/supply-chain-intelligence-suite/food-trust (accessed on 14 June 2024).
- Lobo, P.A.; Sarasvathi, V. Distributed File Storage Model Using IPFS and Blockchain. In Proceedings of the 2021 2nd Global Conference for Advancement in Technology, (GCAT 2021), Bangalore, India, 1–3 October 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Sastry, K.; Goldberg, D.; Kendall, G. Genetic Algorithms. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques; Burke, E.K., Kendall, G., Eds.; Springer: Boston, MA, USA, 2005; pp. 97–125. ISBN 978-0-387-28356-2. [Google Scholar] [CrossRef]
- Glover, F.; Laguna, M. Tabu Search. In Handbook of Combinatorial Optimization: Volume 1–3; Du, D.-Z., Pardalos, P.M., Eds.; Springer: Boston, MA, USA, 1998; pp. 2093–2229. ISBN 978-1-4613-0303-9. [Google Scholar] [CrossRef]
- Muhammad, M.N.; Cavus, N. Fuzzy DEMATEL Method for Identifying LMS Evaluation Criteria. Procedia Comput. Sci. 2017, 120, 742–749. [Google Scholar] [CrossRef]
- Kiela, K.; Jurgo, M.; Navickas, R. Structure of V2X-IoT Framework for ITS Applications. In Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), Milan, Italy, 7–9 July 2020; pp. 229–234. [Google Scholar] [CrossRef]
- Oham, C.; Michelin, R.A.; Jurdak, R.; Kanhere, S.S.; Jha, S. B-FERL: Blockchain Based Framework for Securing Smart Vehicles. Inf. Process Manag. 2021, 58, 102426. [Google Scholar] [CrossRef]
- Deebak, B.D.; Memon, F.H.; Khowaja, S.A.; Dev, K.; Wang, W.; Qureshi, N.M.F.; Su, C. A Lightweight Blockchain-Based Remote Mutual Authentication for AI-Empowered IoT Sustainable Computing Systems. IEEE Internet Things J. 2023, 10, 6652–6660. [Google Scholar] [CrossRef]
- Rivest, R.L.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Brown, R.H.; Good, M.L.; Prabhakar, A. Federal Information Processing Standards Publication: Secure Hash Standard; U.S. Department of Commerce: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology (NIST); Dworkin, M.J.; Barker, E.; Nechvatal, J.; Foti, J.; Bassham, L.E.; Roback, E.; Dary, J.F., Jr. Advanced Encryption Standard (AES); NISY: Gaithersburg, MD, USA, 2001. [Google Scholar] [CrossRef]
- Koblitz, N.; Menezes, A.; Vanstone, S. The State of Elliptic Curve Cryptography. Des. Codes Cryptogr. 2000, 19, 173–193. [Google Scholar] [CrossRef]
- Mobi. Available online: https://dlt.mobi/ (accessed on 14 June 2024).
- Khan, A.A.; Laghari, A.A.; Shaikh, A.A.; Bourouis, S.; Mamlouk, A.M.; Alshazly, H. Educational Blockchain: A Secure Degree Attestation and Verification Traceability Architecture for Higher Education Commission. Appl. Sci. 2021, 11, 10917. [Google Scholar] [CrossRef]
- Gräther, W.; Kolvenbach, S.; Ruland, R.; Schütte, J.; Torres, C.; Wendland, F. Blockchain for education: Lifelong learning passport. In Proceedings of the 1st ERCIM Blockchain Workshop 2018: European Society for Socially Embedded Technologies (EUSSET), Amsterdam, The Netherlands, 8–9 May 2018. [Google Scholar] [CrossRef]
- Hillman, V.; Ganesh, V. Kratos: A Secure, Authenticated and Publicly Verifiable System for Educational Data Using the Blockchain. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5754–5762. [Google Scholar] [CrossRef]
- Guo, H.; Yu, X. A Survey on Blockchain Technology and Its Security. Blockchain: Res. Appl. 2022, 3, 100067. [Google Scholar] [CrossRef]
- Blockcerts. Available online: https://www.blockcerts.org/ (accessed on 14 June 2024).
- Tempesta, S. Introduction to Blockchain for Azure Developers: Understanding the Basic. Foundations of Blockchain; Springer Nature: Dordrecht, The Netherlands, 2019; ISBN 978-1-4842-5311-3. [Google Scholar] [CrossRef]
- Dos Santos, S.; Chukwuocha, C.; Kamali, S.; Thulasiram, R.K. An Efficient Miner Strategy for Selecting Cryptocurrency Transactions. In Proceedings of the 2019 2nd IEEE International Conference on Blockchain, Blockchain 2019, Atlanta, GA, USA, 14–17 July 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 116–123. [Google Scholar] [CrossRef]
- Rajasekaran, A.S.; Azees, M.; Al-Turjman, F. A Comprehensive Survey on Blockchain Technology. Sustain. Energy Technol. Assess. 2022, 52, 102039. [Google Scholar] [CrossRef]
- Szabo, N. Formalizing and Securing Relationships on Public Networks. First Monday 1997, 2, 548. [Google Scholar] [CrossRef]
- Ali, M.S.; Vecchio, M.; Pincheira, M.; Dolui, K.; Antonelli, F.; Rehmani, M.H. Applications of Blockchains in the Internet of Things: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2019, 21, 1676–1717. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-Fungible Token (NFT): Overview, Evaluation, Opportunities and Challenges. arXiv 2021, arXiv:2105.07447. [Google Scholar] [CrossRef]
- Ripple. Available online: https://ripple.com/ (accessed on 15 June 2024).
- Bera, B.; Chattaraj, D.; Das, A.K. Designing Secure Blockchain-Based Access Control Scheme in IoT-Enabled Internet of Drones Deployment. Comput. Commun. 2020, 153, 229–249. [Google Scholar] [CrossRef]
- Feng, C.; Liu, B.; Guo, Z.; Yu, K.; Qin, Z.; Choo, K.-K.R. Blockchain-Based Cross-Domain Authentication for Intelligent 5G-Enabled Internet of Drones. IEEE Internet Things J. 2021, 9, 6224–6238. [Google Scholar] [CrossRef]
- Bera, B.; Saha, S.; Das, A.K.; Kumar, N.; Lorenz, P.; Alazab, M. Blockchain-Envisioned Secure Data Delivery and Collection Scheme for 5G-Based IoT-Enabled Internet of Drones Environment. IEEE Trans. Veh. Technol. 2020, 69, 9097–9111. [Google Scholar] [CrossRef]
- Singh, M.; Aujla, G.S.; Bali, R.S. ODOB: One Drone One Block-Based Lightweight Blockchain Architecture for Internet of Drones. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 249–254. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Karimipour, H.; Srivastava, G.; Aledhari, M. Enabling Drones in the Internet of Things With Decentralized Blockchain-Based Security. IEEE Internet Things J. 2021, 8, 6406–6415. [Google Scholar] [CrossRef]
- Wazid, M.; Bera, B.; Das, A.K.; Garg, S.; Niyato, D.; Hossain, M.S. Secure Communication Framework for Blockchain-Based Internet of Drones-Enabled Aerial Computing Deployment. IEEE Internet Things Mag. 2021, 4, 120–126. [Google Scholar] [CrossRef]
- Gupta, R.; Kumari, A.; Tanwar, S. Fusion of Blockchain and Artificial Intelligence for Secure Drone Networking Underlying 5G Communications. Trans. Emerg. Telecommun. Technol. 2021, 32, e4176. [Google Scholar] [CrossRef]
- Yu, G.; Zha, X.; Wang, X.; Ni, W.; Yu, K.; Yu, P.; Zhang, J.A.; Liu, R.P.; Guo, Y.J. Enabling Attribute Revocation for Fine-Grained Access Control in Blockchain-IoT Systems. IEEE Trans. Eng. Manag. 2020, 67, 1213–1230. [Google Scholar] [CrossRef]
- Singh, M.; Aujla, G.S.; Bali, R.S. A Deep Learning-Based Blockchain Mechanism for Secure Internet of Drones Environment. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4404–4413. [Google Scholar] [CrossRef]
- Allouch, A.; Cheikhrouhou, O.; Koubâa, A.; Toumi, K.; Khalgui, M.; Nguyen Gia, T. Utm-Chain: Blockchain-Based Secure Unmanned Traffic Management for Internet of Drones. Sensors 2021, 21, 3049. [Google Scholar] [CrossRef] [PubMed]
- Muram, F.U.; Atif Javed, M. Drone-Based Risk Management of Autonomous Systems Using Contracts and Blockchain. In Proceedings of the 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, 9–12 March 2021; pp. 679–688. [Google Scholar] [CrossRef]
- Dawaliby, S.; Aberkane, A.; Bradai, A. Blockchain-Based IoT Platform for Autonomous Drone Operations Management. In Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, London, UK, 25 September 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 31–36. [Google Scholar] [CrossRef]
- Satheesh Kumar, M.; Vimal, S.; Jhanjhi, N.Z.; Dhanabalan, S.S.; Alhumyani, H.A. Blockchain Based Peer to Peer Communication in Autonomous Drone Operation. Energy Rep. 2021, 7, 7925–7939. [Google Scholar] [CrossRef]
- SkyGrid. Available online: https://www.skygrid.com/ (accessed on 15 June 2024).
- Pierro, G.A.; Tonelli, R. Can Solana Be the Solution to the Blockchain Scalability Problem? In Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering, (SANER 2022), Honolulu, HI, USA, 15–18 March 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 1219–1226. [Google Scholar] [CrossRef]
- CargoSmart. Available online: https://www.cargosmart.com/en-us/ (accessed on 15 June 2024).
- Kumar, R.; Tripathi, R. Chapter 2—Blockchain-Based Framework for Data Storage in Peer-to-Peer Scheme Using Interplanetary File System. In Handbook of Research on Blockchain Technology; Krishnan, S., Balas, V.E., Julie, E.G., Robinson, Y.H., Balaji, S., Kumar, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 35–59. ISBN 978-0-12-819816-2. [Google Scholar] [CrossRef]
- Gitopia. Available online: https://gitopia.com/ (accessed on 16 June 2024).
- Alzhrani, F.; Saeedi, K.; Zhao, L. Architectural Patterns for Blockchain Systems and Application Design. Appl. Sci. 2023, 13, 11533. [Google Scholar] [CrossRef]
- Bao, Z.; Wang, Q.; Shi, W.; Wang, L.; Lei, H.; Chen, B. When Blockchain Meets SGX: An Overview, Challenges, and Open Issues. IEEE Access 2020, 8, 170404–170420. [Google Scholar] [CrossRef]
- Guru, A.; Mohanta, B.K.; Mohapatra, H.; Al-Turjman, F.; Altrjman, C.; Yadav, A. A Survey on Consensus Protocols and Attacks on Blockchain Technology. Appl. Sci. 2023, 13, 2604. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, X.; Wu, Y.C.; Fu, H.; Zhou, M. A Study on Blockchain Sandwich Attack Strategies Based on Mechanism Design Game Theory. Electronics 2023, 12, 4417. [Google Scholar] [CrossRef]
- Huang, Y.; Bian, Y.; Li, R.; Zhao, J.L.; Shi, P. Smart Contract Security: A Software Lifecycle Perspective. IEEE Access 2019, 7, 150184–150202. [Google Scholar] [CrossRef]
- Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract. IEEE Access 2022, 10, 6605–6621. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Samal, K.; Jena, D.; Ramasubbareddy, S.; Karuppiah, M. Blockchain-Based Consensus Algorithm for Solving Security Issues in Distributed Internet of Things. Int. J. Electron. Bus. 2022, 17, 283–304. [Google Scholar] [CrossRef]
- Gabuthy, Y. Blockchain-Based Dispute Resolution: Insights and Challenges. Games 2023, 14, 34. [Google Scholar] [CrossRef]
- Zeng, R.; You, J.; Li, Y.; Han, R. An ICN-Based IPFS High-Availability Architecture. Future Internet 2022, 14, 122. [Google Scholar] [CrossRef]
- Lin, I.C.; Tseng, P.C.; Chen, P.H.; Chiou, S.J. Enhancing Data Preservation and Security in Industrial Control Systems through Integrated IOTA Implementation. Processes 2024, 12, 921. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Gurunathan, M.; Ramli, R.; Babatunde, K.A.; Faisal, F.H. Review and Development of a Scalable Lightweight Blockchain Integrated Model (LightBlock) for IoT Applications. Electronics 2023, 12, 1025. [Google Scholar] [CrossRef]
- Nie, Z.; Zhang, M.; Lu, Y. HPoC: A Lightweight Blockchain Consensus Design for the IoT. Appl. Sci. 2022, 12, 12866. [Google Scholar] [CrossRef]
- Wang, G.; Shi, Z.J.; Nixon, M.; Han, S. SoK: Sharding on Blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies, Zurich, Switzerland, 21–23 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 41–61. [Google Scholar] [CrossRef]
- Liu, C.; Wan, J.; Li, L.; Yao, B. Throughput Optimization for Blockchain System with Dynamic Sharding. Electronics 2023, 12, 4915. [Google Scholar] [CrossRef]
- Chen, R.; Wang, L.; Peng, C.; Zhu, R. An Effective Sharding Consensus Algorithm for Blockchain Systems. Electronics 2022, 11, 2597. [Google Scholar] [CrossRef]
- Dennis, R.; Owenson, G.; Aziz, B. A Temporal Blockchain: A Formal Analysis. In Proceedings of the 2016 International Conference on Collaboration Technologies and Systems, (CTS 2016), Orlando, FL, USA, 31 October–4 November 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 430–437. [Google Scholar] [CrossRef]
- Wang, W.; Hoang, D.T.; Hu, P.; Xiong, Z.; Niyato, D.; Wang, P.; Wen, Y.; Kim, D.I. A Survey on Consensus Mechanisms and Mining Strategy Management in Blockchain Networks. IEEE Access 2019, 7, 22328–22370. [Google Scholar] [CrossRef]
- Awan, K.A.; Ud Din, I.; Almogren, A.; Kim, B.S. Enhancing Performance and Security in the Metaverse: Latency Reduction Using Trust and Reputation Management. Electronics 2023, 12, 3362. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Q.; Hei, Y.; Li, D. Blockchain-Based Licensed Spectrum Fair Distribution Method towards 6G-Envisioned Communications. Appl. Sci. 2023, 13, 9231. [Google Scholar] [CrossRef]
- Oliveira, M.; Chauhan, S.; Pereira, F.; Felgueiras, C.; Carvalho, D. Blockchain Protocols and Edge Computing Targeting Industry 5.0 Needs. Sensors 2023, 23, 9174. [Google Scholar] [CrossRef] [PubMed]
- Platt, M.; McBurney, P. Sybil in the Haystack: A Comprehensive Review of Blockchain Consensus Mechanisms in Search of Strong Sybil Attack Resistance. Algorithms 2023, 16, 34. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, J.; Huang, S.; Peng, Z.; Ma, J.; Zhu, X. Privacy-Preserving Energy Trading Using Blockchain and Zero Knowledge Proof. In Proceedings of the 2022 IEEE International Conference on Blockchain, Blockchain 2022, Espoo, Finland, 2–5 May 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 412–418. [Google Scholar] [CrossRef]
- Mahmood, Z.H.; Ibrahem, M.K. New Fully Homomorphic Encryption Scheme Based on Multistage Partial Homomorphic Encryption Applied in Cloud Computing. In Proceedings of the 2018 1st Annual International Conference on Information and Sciences (AiCIS), Fallujah, Iraq, 20–21 November 2018; pp. 182–186. [Google Scholar] [CrossRef]
- Luu, L.; Chu, D.-H.; Olickel, H.; Saxena, P.; Hobor, A. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 254–269. [Google Scholar] [CrossRef]
- Tsankov, P.; Dan, A.; Drachsler-Cohen, D.; Gervais, A.; Bünzli, F.; Vechev, M. Securify: Practical Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 67–82. [Google Scholar] [CrossRef]
- Kalra, S.; Goel, S.; Dhawan, M.; Sharma, S. ZEUS: Analyzing Safety of Smart Contracts. In Proceedings of the 25th Annual Network and Distributed System Security Symposium, (NDSS 2018), San Diego, CA, USA, 18–21 February 2018; The Internet Society: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- McKeen, F.; Alexandrovich, I.; Berenzon, A.; Rozas, C.V.; Shafi, H.; Shanbhogue, V.; Savagaonkar, U.R. Innovative Instructions and Software Model for Isolated Execution. In Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, Virtual, 18 October 2021; Association for Computing Machinery: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Lafourcade, P.; Lombard-Platet, M. About Blockchain Interoperability. Inf. Process Lett. 2020, 161, 105976. [Google Scholar] [CrossRef]
- Pillai, B.; Biswas, K.; Muthukkumarasamy, V. Cross-Chain Interoperability among Blockchain-Based Systems Transactions. Knowl. Eng. Rev. 2020, 35, 314. [Google Scholar] [CrossRef]
- Hardjono, T.; Lipton, A.; Pentland, A. Toward an Interoperability Architecture for Blockchain Autonomous Systems. IEEE Trans. Eng. Manag. 2020, 67, 1298–1309. [Google Scholar] [CrossRef]
- Pang, Y. A New Consensus Protocol for Blockchain Interoperability Architecture. IEEE Access 2020, 8, 153719–153730. [Google Scholar] [CrossRef]
- Tan, C.; Bei, S.; Jing, Z.; Xiong, N. An Atomic Cross-Chain Swap-Based Management System in Vehicular Ad Hoc Networks. Wirel. Commun. Mob. Comput. 2021, 2021, 6679654. [Google Scholar] [CrossRef]
- Popchev, I.; Radeva, I.; Doukovska, L. Oracles Integration in Blockchain-Based Platform for Smart Crop Production Data Exchange. Electronics 2023, 12, 2244. [Google Scholar] [CrossRef]
- Caldarelli, G. Understanding the Blockchain Oracle Problem: A Call for Action. Information 2020, 11, 509. [Google Scholar] [CrossRef]
- Bhushan, B.; Sharma, N. Transaction Privacy Preservations for Blockchain Technology. In International Conference on Innovative Computing and Communications, Proceedings of the ICICC 2020, Delhi, India, 21–23 February 2020; Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A., Eds.; Springer: Singapore, 2021; pp. 377–393. [Google Scholar] [CrossRef]
- Lesaege, C.; Ast, F.; George, W. Kleros. White Paper. 2019. Available online: https://kleros.io/whitepaper.pdf (accessed on 2 August 2024).
- European Parliament: Directorate-General for Parliamentary Research Services; Finck, M. Blockchain and the General Data Protection Regulation–Can Distributed Ledgers Be Squared with European Data Protection Law? Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Lin, I.C.; Liao, T.C. A Survey of Blockchain Security Issues and Challenges. Int. J. Netw. Secur. 2017, 19, 653–659. [Google Scholar] [CrossRef]
- Orji, I.J.; Kusi-Sarpong, S.; Huang, S.; Vazquez-Brust, D. Evaluating the Factors That Influence Blockchain Adoption in the Freight Logistics Industry. Transp. Res. E Logist. Transp. Rev. 2020, 141, 102025. [Google Scholar] [CrossRef]
- Lutfiani, N.; Aini, Q.; Rahardja, U.; Wijayanti, L.; Nabila, E.A.; Ali, M.I. Transformation of Blockchain and Opportunities for Education 4.0. Int. J. Educ. Learn. 2021, 3, 222–231. [Google Scholar] [CrossRef]
- Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Fernandez-Marques, J.; Gao, Y.; Sani, L.; Li, K.H.; Parcollet, T.; de Gusmão, P.P.B.; et al. Flower: A Friendly Federated Learning Research Framework. arXiv 2020, arXiv:2007.14390. [Google Scholar] [CrossRef]
- Li, H.; Han, D. EduRSS: A Blockchain-Based Educational Records Secure Storage and Sharing Scheme. IEEE Access 2019, 7, 179273–179289. [Google Scholar] [CrossRef]
- Chohan, U.W. Initial Coin Offerings (ICOs): Risks, Regulation, and Accountability. In Cryptofinance and Mechanisms of Exchange: The Making of Virtual Currency; Goutte, S., Guesmi, K., Saadi, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 165–177. ISBN 978-3-030-30738-7. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain Technology and Its Relationships to Sustainable Supply Chain Management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef]
- Kosmarski, A. Blockchain Adoption in Academia: Promises and Challenges. J. Open Innov. Technol. Mark. Complex. 2020, 6, 117. [Google Scholar] [CrossRef]
- Mirabelli, G.; Solina, V. Blockchain and Agricultural Supply Chains Traceability: Research Trends and Future Challenges. Procedia Manuf. 2020, 42, 414–421. [Google Scholar] [CrossRef]
- Torky, M.; Hassanein, A.E. Integrating Blockchain and the Internet of Things in Precision Agriculture: Analysis, Opportunities, and Challenges. Comput. Electron. Agric. 2020, 178, 105476. [Google Scholar] [CrossRef]
- Upadhyay, N. Demystifying Blockchain: A Critical Analysis of Challenges, Applications and Opportunities. Int. J. Inf. Manag. 2020, 54, 102120. [Google Scholar] [CrossRef]
Exclusion Criteria | Inclusion Criteria |
---|---|
Older than five years Written in a different language than English | Addresses the applicability of blockchain technology |
Outlines the challenges that blockchain poses Proposes solutions for the blockchain issues |
Sector | Applicability | Benefits | Articles |
---|---|---|---|
IoT Environments | Decentralized, privacy-preserving, and fair data-management systems Governance mechanisms Blockchain-based authentication protocols | Enhanced security and privacy Efficient data management Improved transparency and governance Streamlined operations and infrastructure monitoring | [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33] |
Healthcare | Encrypted data sharing Decentralized systems for health data management | Improved data privacy and security Scalability and performance Enhanced interoperability of EHR | [23,27,29,32,34,35,36,37] |
Cybersecurity and Data Management | ACE-BC framework Blockchain-based special key security model (BSKM) Integration with cloud computing Blockchain for IoT big data DAuth authentication system | Enhanced data integrity and security Increased performance metrics Cost reduction and efficiency | [12,24,31,32,38,39] |
Supply Chain | Wine supply chain management | Improved efficiency Increased transparency Reduced operational costs Monitoring of greenhouse gas emissions | [21,27,29,32] |
Smart Transportation | Bus transportation framework Blockchain with 5G for V2X communications | Enhanced management, efficiency, security, and data integrity Decentralized data storage | [22,29,30] |
Education | Education data management | Decentralization Transparency and traceability Security and reliability | [40] |
Digital and Financial Management | Digital currencies and cross-border transactions NFT marketplaces | Reduced transaction times and costs Increased security, reliability, and traceability | [32] |
Internet of Drones | Robust authentication processes Decentralized data management | Enhanced privacy and security Secure data collection, transaction logging, and communication | [33] |
Maritime Shipping | Blockchain-based JIT and green operation system | Improved efficiency and transparency in maritime operations Significant reduction in emissions | [41] |
Distributed Agile Software Development | AgilePlus blockchain framework | Improved transparency and traceability Increased security Streamlined development processes | [42] |
Participant | Responsibility |
---|---|
Administrator | Initializes the redactable blockchain network and establishes the key-generation center and verification institution |
Verification Institution | Registers and verifies the identities of medical institutions and patients |
Key Generation Center | Produces and distributes trapdoors and authentication keys to medical institutions |
Medical Institutions | Provides medical services and manages information within the RCH network |
Patients | Participates in the data-sharing scheme and collaborates with medical institutions to modify their EHRs |
Component | Responsibility |
---|---|
Edge Gateways | The interface between IoT devices and the blockchain network |
5G Base Station | Provides fast connection between edge gateways and cloud |
Certificate Authority | Provides permission to edge gateways to join the blockchain |
Blockchain Network | Consortium blockchain, used for decentralized storage and access control |
Entity | Responsibility |
---|---|
Data Owner | Owns and controls access to the data |
User | Requests access to data with granted authorization |
Blockchain-based Security Manager | Manages blockchain operations and ensures event authenticity |
Big Data Distributed Storage | Responsible for storing fragmented and encrypted data |
Blockchain | Stores metadata and permission lists to ensure tamper resistance and audibility |
Entity | Responsibility |
---|---|
HTTP Browser Layer | Users interact with the system via a web browser |
User Interface Layer | The intuitive web interface for users |
Business Logic Layer | Handles business logic through smart contracts |
Data Access Layer | Ensures decentralized and secure data storage through IPFS |
Component | Functionality |
---|---|
Nodes/Users | Transaction requesters and receivers. They maintain a copy of the entire blockchain ledger [99] |
Miners | Nodes that have the ability to add new blocks to the blockchain. Responsible for validating and verifying transactions [100] |
Blocks | A fundamental unit of the blockchain, representing transaction details [101] |
Verification Mechanism | Involves two steps verification, using a smart contract [102] and a consensus mechanism [103] |
Component | Functionality |
---|---|
Data source | This includes various inputs necessary for the system’s functioning, such as vessel operation data |
On-chain | Responsible for storing critical data in a decentralized manner, and operation execution through smart contracts |
Off-chain | Handles data that are either too large or sensitive to be stored directly on the blockchain |
Layer | Responsibility |
---|---|
Interface Layer | Includes user-facing applications, decentralized applications, and a web portal that connects users to the system |
Application Layer | Manages metadata of transactions, payments, and records such as posts, prototypes, and project agreements |
Business Logic Layer | Contains smart contracts that govern the terms and conditions for transactions |
Trust Layer | Manages the consensus algorithm and smart contract security analysis |
Transaction Layer | Handles the initiation and validation of transactions, as well as mining and block validation |
Infrastructure Layer | Consists of a peer-to-peer network for distributing, verifying, and forwarding transactions |
Security Layer | Protects the network from attacks such as 51% attacks and includes security algorithms and protocols |
Broad Challenges | Related Challenges | Key Threats | Articles |
---|---|---|---|
Technical and Performance Issues | Scalability Gas fees and memory constraints Redundancy | Network spamming Slower transaction verification Resource-heavy operations | [12,22,23,24,25,26,27,28,29,30,32,33,35,36,40,41,42,124,125,126] |
Security and Protocol Integrity | Consensus mechanism Smart contract Immutability Privacy and data security Criminal activity | 51% attack Double spending Eclipse attack Sybil attack Spoofing attack Selfish mining attack BGP hijacking attack Balance attack Transaction malleability Sandwich attack Liveness attack Man in the middle attack DoS/DDoS attack | [12,23,25,26,27,28,29,32,35,36,40,42,125,126,127,128,129,130] |
Operational and Global Management | Governance Interoperability | Unequal participant influence Difficulties in system communication Financial losses | [19,28,32,36,40,41,42,131] |
Legal and Regulatory Compliance | Regulatory concerns | Non-compliance risks Operational disruptions due to regulatory changes | [23,28,36,40,41] |
Adoption and Knowledge Barriers | Educational materials Immaturity | Lack of understanding and awareness of blockchain technology | [21,40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morar, C.D.; Popescu, D.E. A Survey of Blockchain Applicability, Challenges, and Key Threats. Computers 2024, 13, 223. https://doi.org/10.3390/computers13090223
Morar CD, Popescu DE. A Survey of Blockchain Applicability, Challenges, and Key Threats. Computers. 2024; 13(9):223. https://doi.org/10.3390/computers13090223
Chicago/Turabian StyleMorar, Catalin Daniel, and Daniela Elena Popescu. 2024. "A Survey of Blockchain Applicability, Challenges, and Key Threats" Computers 13, no. 9: 223. https://doi.org/10.3390/computers13090223
APA StyleMorar, C. D., & Popescu, D. E. (2024). A Survey of Blockchain Applicability, Challenges, and Key Threats. Computers, 13(9), 223. https://doi.org/10.3390/computers13090223