Computational Models of the NF-KB Signalling Pathway
<p>High-level representation of how the multitude of inducers of the NF-<span class="html-italic">κ</span>B signalling pathway, which converge on the NF-<span class="html-italic">κ</span>B signalling module (NF-<span class="html-italic">κ</span>B, I<span class="html-italic">κ</span>B<span class="html-italic">α</span> and IKK), before diverging to regulate a multitude of gene products, has the topology of a bow-tie motif from systems biology. Pahl [<a href="#B11-computation-02-00131" class="html-bibr">11</a>] advises that there are over 150 known inducers of NF-<span class="html-italic">κ</span>B activation, which can be allocated to a number of categories of environmental stimuli. Similarly, Pahl advises that more than 150 genes are known to be regulated by NF-<span class="html-italic">κ</span>B, which can again be categorised into a number of key physiological responses.</p> "> Figure 2
<p>Simplified diagram depicting the two NF-<span class="html-italic">κ</span>B signalling pathways. Both the canonical and non-canonical pathways are initiated through extracellular stimuli. Following activation of the IKK complex, signal transduction leads to the degradation of I<span class="html-italic">κ</span>B and the resultant release and translocation of the relevant NF-<span class="html-italic">κ</span>B heterodimer into the nucleus for transcriptional activation.</p> "> Figure 3
<p>Unified Modelling Language (UML) class association diagram for the canonical NF-<span class="html-italic">κ</span>B signalling pathway. The layout used follows the spatial aspects of the cascade of component relationships involved in the biological system from cell membrane activation down to gene transcription within the nucleus. The diagram conveys directed relationships by the labels at each end of the connectors. The arrowheads pointing towards the nuclear receptor convey inheritance, such that exporting receptor and importing receptor are sub-types. The unfilled diamonds on the NF-<span class="html-italic">κ</span>B-I<span class="html-italic">κ</span>B complex denote aggregation, <span class="html-italic">i.e.</span>, an I<span class="html-italic">κ</span>B component and an NF-<span class="html-italic">κ</span>B component aggregate to form the inhibited complex.</p> ">
Abstract
:1. Introduction
2. The NF-κB Signalling Pathway
3. Existing Computational Models of NF-κB
3.1. Deterministic Differential Equation Models
3.2. Semi-Stochastic (Hybrid) Differential Equation Models
3.3. Agent-Based Models
3.4. Peer-Validation of These Computational Models
3.5. Minimal Models
4. Discussion and Perspectives
Year | Authors | Modelling Paradigm | Stimuli | Cell Type | Level | Pathway Components | Key Advances |
---|---|---|---|---|---|---|---|
2000 | Carlotti et al. [34] | Deterministic | IL-1 | Monkey Smooth Muscle | Single-Cell | NF-κB, IκBα | First known model of NF-κB and IκBα dissociation and translocation dynamics. |
2002 | Hoffmann et al. [35] | Deterministic | TNFα | Mouse Fibroblast | Population | IKK, NF-κB, IκBα, IκBβ, IκBϵ | First model of TNFα induced activation of the signalling pathway. |
2004 | Lipniacki et al. [47] | Deterministic | - | - | Population | IKK, NF-κB, IκBα, A20 | Incorporated 2-feedback loop (IκBα and A20) to Hoffmann model and parameter refit. |
2004 | Nelson et al. [45] | Deterministic | TNFα | Human HeLa and SK-N-AS | Single-Cell | IKK, NF-κB, IκBα | First model to show NF-κB oscillations at single-cell level. Augmented Hoffmann model using single-cell data for calibration and validation. |
2006 | Pogson et al. [69] | Agent-Based | IL-1 | - | Single-Cell | TIR, IKK, NF-κB, Nuclear Membrane Transporters | First known agent-based model of signalling pathway. |
2006 | Lipniacki et al. [59] | Semi-Stochastic | TNFα | - | Single-Cell | IKK, NF-κB, IκBα, A20, mRNA, genes | Stochastic transcription to generate cellular heterogeneity. |
2006 | Cheong et al. [54] | Deterministic | TNFα | Mouse Embryonic Fibroblast | Population | IKK, NF-κB, IκBα | Incorporated temporal profiles of IKK activation. |
2006 | Kearns et al. [40] | Deterministic | TNFα | Mouse Embryonic Fibroblast | Population | IKK, NF-κB, IκBα, IκBβ, IκBϵ | Reimplementation of Hoffmann model in Matlab. Showed that IκBϵ provides negative feedback control of NF-κB oscillations. |
2007 | Basak et al. [42] | Deterministic | LTβR | Mouse Embryonic Fibroblast | Population | IKK1, IKK2, NF-κB, IκBδ | Incorporated fourth IκB inhibtor (nfkb2 p100, or IκBδ). Models cross-talk of canonical NF-κB/RelA activity in response to non-canonical IKK1-induction. |
2007 | O’Dea et al. [38] | Deterministic | TNFα | Mouse Embryonic Fibroblast | Population | IKK, NF-κB, IκBα, IκBβ, IκBϵ | Distinguished between NF-κB bound and free IκB pools. Investigated steady-state regulation of NF-κB signalling module. |
2007 | Lipniacki et al. [60] | Semi-Stochastic | TNFα | - | Single-Cell | TNFR1, IKKK, IKK, NF-κB, IκBα, A20, mRNA, genes | Incorporated stochastic switches for cell membrane receptor activation by TNFα ligand, and transcription of IκBα and A20 genes. |
2008 | Pogson et al. [50] | Agent-Based | IL-1 | Human HeLa | Single-Cell | TIR, IKK, NF-κB, IκBα, genes, cytoskeleton, Nuclear Membrane Transporters | Updated earlier ABM with transcription and translation of IκBα to provide negative feedback. Also incorporated sequestration of excess IκBα to cytoskeleton. |
2009 | Shih et al. [43] | Deterministic | TNFα, IL-1, LPS | Mouse Embryonic Fibroblast | Population | IKK, NF-κB, IκBα, IκBβ, IκBδ, IκBϵ | Modelled the 4 distinct IκB variants and utilised TNFα, IL-1 and LPS stimulation to determine signal specificity for the negative feedback loops. |
2009 | Ashall et al. [63] | Semi-Stochastic | TNFα | SK-N-AS and Mouse Embryonic Fibroblast | Single-Cell | IKK, NF-κB, IκBα, IκBϵ, A20, genes | Incorporated delayed stochastic transcription of IκBϵ, and stochastic transcription of IκBα and A20. |
2010 | Tay et al. [56] | Semi-Stochastic | TNFα | Mouse Fibroblast | Single-Cell | TNFR1, IKKK, IKK, NF-κB, IκBα, A20, mRNA, genes | Updated to reflect the heterogeneous, digital response of single cells, and the analogue dynamics of peak NF-κB intensity, response time and oscillation number, to modulate the overall population response. |
2010 | Paszek et al. [41] | Semi-Stochastic | TNFα | Mouse Embryonic Fibroblast | Population | IKKK, IKK, NF-κB, IκBα, IκBϵ, A20, mRNA, genes | Aggregated large-scale single-cell dynamics to show that cellular heterogeneity (for timings of NF-κB oscillations) is important for population-level robustness. |
2010 | Turner et al. [57] | Semi-Stochastic | TNFα | SK-N-AS | Single-Cell | TNFR1, IKK, NF-κB, IκBα, A20, mRNA, genes | Updated Ashall model to incorporate stochastic processes for IKK activation. |
2012 | Fallahi-Sichani et al. [62] | Semi-Stochastic | TNFα | Macrophage | Population | TNFR1, IKKK, IKK, NF-κB, IκBα, A20, mRNA, genes | Merged their previous ABM of granuloma formation (did not model NF-κB) with the ODE model of Tay, to develop a multi-scale hybrid model. |
2013 | Choudhary et al. [58] | Deterministic | TNFα | Human Epithelial | Population | TRAF1, NIK, TRAF2, NF-κB, IκBα, IκBδ, A20, mRNA, genes | Integrated canonical and non-canonical pathways, using TRAF1-NIK as a feed-forward complex. |
2013 | Pekalski et al. [61] | Semi-Stochastic | TNFα | 3T3 | Single-Cell | TNFR1, IKKK, IKK, NF-κB, IκBα, A20, mRNA, genes, TNFα | Built on Tay model to integrate negative and positive feedback loops due to IκBα and A20, and TNFα respectively. |
Acknowledgments
Conflicts of Interest
References
- Bhalla, U.S.; Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 1999, 283, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Barkai, N.; Leibler, S. Robustness in simple biochemical networks. Nature 1997, 387, 913–917. [Google Scholar] [PubMed]
- Kitano, H. Systems biology: A brief overview. Science 2002, 295, 1662–1664. [Google Scholar] [CrossRef] [PubMed]
- Oltvai, Z.N.; Barabasi, A.L. Life’s complexity pyramid. Science 2002, 298, 763–764. [Google Scholar] [CrossRef] [PubMed]
- Wolkenhauer, O. Systems biology: The reincarnation of systems theory applied in biology? Brief. Bioinform. 2001, 2, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Kitano, H. Computational systems biology. Nature 2002, 420, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Mardinoglu, A.; Nielsen, J. Systems medicine and metabolic modelling. J. Intern. Med. 2012, 271, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Perelson, A.S.; Weisbuch, G. Immunology for physicists. Rev. Mod. Phys. 1997, 69, 1219–1267. [Google Scholar] [CrossRef]
- Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J.D. Molecular Biology of the Cell; Garland Publishing Inc.: New York, NY, USA, 1994. [Google Scholar]
- Tian, B.; Brasier, A.R. Identification of a nuclear factor kappa b-dependent gene network. Recent Prog. Horm. Res. 2003, 58, 95–130. [Google Scholar] [CrossRef] [PubMed]
- Pahl, H.L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999, 18, 6853–6866. [Google Scholar] [CrossRef] [PubMed]
- Sen, R.; Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986, 46, 705–716. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Ghosh, S. The NF-κB family of transcription factors and its regulation. In NF-κB A Network Hub Controlling Immunity, Inflammation, and Cancer; Karin, M., Staudt, L.M., Eds.; Cold Spring Harbour Perspectives in Biology, Cold Spring Harbour Press: New York, NY, USA, 2009; pp. 5–18. [Google Scholar]
- Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu. Rev. Immunol. 2000, 18, 621–663. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, E.; O’Neill, L.A.J.; Rawlinson, L.; Edbrooke, M.R.; Woo, P.; Saklatvala, J. Interleukin 1 induces NF-κB through its type I but not its type II receptor in lymphocytes. J. Biol. Chem. 1992, 267, 15836–15841. [Google Scholar] [PubMed]
- Bubici, C.; Papa, S.; Dean, K.; Franzoso, G. Mutual cross-talk between reactice oxygen species and nuclear factor-kappa B: Molecular basis and biological basis. Oncogene 2006, 25, 6731–6748. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Hiscott, J.; Nguyen, T.L.; Arguello, M.; Nakhaei, P.; Paz, S. Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene 2006, 25, 6844–6867. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, N.; Rivest, S. Toll-Like receptor 4: The missing link of cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. 2001, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Bender, K.; Gottlicher, M.; Whiteside, S.; Rahmsdorf, H.; Herrlich, P. Sequential DNA damage-independent and -dependent activation of NF-κB by UV. EMBO J. 1998, 17, 5170–5181. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, A.; Persson, L.; Palmer, I.R.; Evans, I.; Yang, L.; Smallwood, R.; Black, R.; Qwarnstrom, E.E. Distinct NF-κB regulation by shear stress through Ras-dependent IκBα oscillations: Real time analysis of flow-mediated activation in live cells. Circ. Res. 2005, 96, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, Z.H.; Deitch, E.A.; Davidson, M.T.; Szabo, C.; Vizi, E.S.; Hasko, G. Disruption of the actin cytoskeleton results in nuclear factor-κB activation and inflammatory mediator production in cultured human epithelial cells. J. Cell. Physiol. 2004, 200, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Brasier, A.R. The NF-κB regulatory network. Cardiovasc. Toxicol. 2006, 6, 111–130. [Google Scholar] [CrossRef] [PubMed]
- Ben-Neriah, Y.; Karin, M. Inflammation meets Cancer, with NF-kappaB as the Matchmaker. Nat. Immunol. 2011, 12, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; May, M.J.; Kopp, E.B. NF-κB and Rel Proteins: Evolutionarily conserved mediators of immune response. Annu. Rev. Immunol. 1998, 16, 225–260. [Google Scholar] [CrossRef] [PubMed]
- Siebenlist, U.; Franzoso, G.; Brown, K. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 1994, 10, 405–455. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.S. The NF-κB and IκB Proteins: New discoveries and insights. Annu. Rev. Immunol. 1996, 14, 649–681. [Google Scholar] [CrossRef] [PubMed]
- Karin, M. The beginning of the end: IκB Kinase (IKK) and NF-κB Activation. J. Biol. Chem. 1999, 274, 27339–27342. [Google Scholar] [CrossRef] [PubMed]
- Karin, M. How NF-κB is activated: The role of the IκB Kinase (IKK) complex. Oncogene 1999, 18, 6867–6874. [Google Scholar] [CrossRef] [PubMed]
- Senftleben, U.; Cao, Y.; Xiao, G.; Greten, F.R.; Krahn, G.; Bonizzi, G.; Chen, Y.; Hu, Y.; Fong, A.; Sun, S.C.; et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 2001, 293, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Travers, P.; Walport, M. Janeway’s Immunobiology, 7th ed.; Garland Science: New York, NY, USA, 2008. [Google Scholar]
- Babur, O.; Demir, E.; Gonen, M.; Sander, C.; Dogrusoz, U. Discovering modulators of gene expression. Nucleic Acids Res. 2010, 38, 5648–5656. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, Y.; Tian, B.; Jamaluddin, M.; Mitra, A.; Yang, J.; Rowicka, M.; Brasier, A.R.; Kudlicki, A. Modulation of gene expression regulated by the transcription factor NF-κB/RelA. J. Biol. Chem. 2014, 289, 11927–11944. [Google Scholar] [CrossRef] [PubMed]
- Carlotti, F.; Dower, S.K.; Qwarnstrom, E.E. Dynamic shuttling of nuclear factor κB between the nucleus and cytoplasm as a consequence of inhibitor dissociation. J. Biol. Chem. 2000, 275, 41028–41034. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Levchenko, A.; Scott, M.L.; Baltimore, D. The IκB - NF-κB signaling module: Temporal control and selective gene activation. Science 2002, 298, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Mendes, P. GEPASI: A software package for modelling the dynamics, steady staes and control of biochemical and other systems. Comput. Appl. Biosci. 1993, 9, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Mendes, P. Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends Biol. Sci. 1997, 22, 361–363. [Google Scholar] [CrossRef]
- O’Dea, E.L.; Barken, D.; Peralta, R.Q.; Tran, K.T.; Werner, S.L.; Kearns, J.D.; Levchenko, A.; Hoffmann, A. A homeostatic model of IκB metabolism to control constitutive NF-κB activity. Mol. Syst. Biol. 2007, 3, 111. [Google Scholar] [CrossRef] [PubMed]
- Cheong, R.; Hoffmann, A.; Levchenko, A. Understanding NF-κB signalling via mathematical modeling. Mol. Syst. Biol. 2008, 4, 192. [Google Scholar] [CrossRef] [PubMed]
- Kearns, J.D.; Basak, S.; Werner, S.L.; Huang, C.S.; Hoffmann, A. IκBϵ provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression. J. Cell Biol. 2006, 173, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Paszek, P.; Ryan, S.; Ashall, L.; Sillitoe, K.; Harper, C.V.; Spiller, D.G.; Rand, D.A.; White, M.R.H. Population robustness arising from cellular heterogeneity. Proc. Natl. Acad. Sci. USA 2010, 107, 11644–11649. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Kim, H.; Kearns, J.D.; Tergaonkar, V.; O’Dea, E.; Werner, S.L.; Benedict, C.A.; Ware, C.F.; Ghosh, G.; Verma, I.M.; et al. A fourth IkappaB protein within the NF-kappaB signaling module. Cell 2007, 128, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Shih, V.F.S.; Kearns, J.D.; Basak, S.; Savinova, O.V.; Ghosh, G.; Hoffmann, A. Kinetic control of negative feedback regulators of NF-κB/RelA determines their pathogen- and cytokine-receptor signaling specificity. Proc. Natl. Acad. Sci. USA 2009, 106, 9619–9624. [Google Scholar] [CrossRef] [PubMed]
- Shih, V.F.S.; Davis-Turak, J.; Macal, M.; Huang, J.Q.; Ponomarenko, J.; Kearns, J.D.; Yu, T.; Fagerlund, R.; Asagiri, M.; Zuniga, E.I.; et al. Control of RelB during dendritic cell activation integrates canonica and noncanonical NF-κB pathways. Nat. Immunol. 2012, 13, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.E.; Ihekwaba, A.E.C.; Elliott, M.; Johnson, J.R.; Gibney, C.A.; Foreman, B.E.; Nelson, G.; See, V.; Horton, C.A.; Spiller, D.G.; et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 2004, 306, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Lucey, B.P.; Nelson-Rees, W.A.; Hutchins, G.M. Henrietta Lacks, HeLa cells, and Cell culture contamination. Arch. Pathol. Lab. Med. 2009, 133, 1463–1467. [Google Scholar] [PubMed]
- Lipniacki, T.; Paszek, P.; Brasier, A.R.; Luxon, B.; Kimmel, M. Mathematical model of NF-κB regulatory module. J. Theor. Biol. 2004, 228, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Carlotti, F.; Chapman, R.; Dower, S.K.; Qwarnstrom, E.E. Activation of nuclear factor κB in single living cells. J. Biol. Chem. 1999, 274, 37941–37949. [Google Scholar] [CrossRef] [PubMed]
- Rice, N.R.; Ernst, M.K. In vivo control of NF-κB activation by IκBα. EMBO J. 1993, 12, 4685–4695. [Google Scholar] [PubMed]
- Pogson, M.; Holcombe, M.; Smallwood, R.; Qwarnstrom, E.E. Introducing spatial information into predictive NF-κB modelling — An agent-based approach. PLoS One 2008, 3, e2367. [Google Scholar] [CrossRef] [PubMed]
- Krikos, A.; Laherty, C.D.; Dixit, V.M. Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J. Biol. Chem. 1992, 267, 17971–17976. [Google Scholar] [PubMed]
- Yang, L.; Chen, H.; Qwarnstrom, E. Degradation of IκBα is limited by a postphosphorylation/ubiquitination event. Biochem. Biophys. Res. Commun. 2001, 285, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.G.; Boone, D.L.; Chai, S.; Libby, S.L.; Chien, M.; Lodolce, J.P.; Ma, A. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 2000, 289, 2350–2354. [Google Scholar] [CrossRef] [PubMed]
- Cheong, R.; Bergmann, A.; Werner, S.L.; Regal, J.; Hoffmann, A.; Levchenko, A. Transient IκB kinase activity mediates temporal NF-κB dynamics in response to wide range of tumour necrosis factor-α doses. J. Biol. Chem. 2006, 281, 2945–2950. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, B.E.; Levchenko, A.; Meyerowitz, E.M.; Wold, B.J.; Mjolsness, E.D. Cellerator: Extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 2003, 19, 677–678. [Google Scholar] [CrossRef] [PubMed]
- Tay, S.; Hughey, J.J.; Lee, T.K.; Lipniacki, T.; Quake, S.R.; Covert, M.W. Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature 2010, 466, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.A.; Paszek, P.; Woodcock, D.J.; Nelson, D.E.; Horton, C.A.; Wang, Y.; Spiller, D.G.; Rand, D.A.; White, M.R.H.; Harper, C.V. Physiological levels of TNFα stimulation induce stochastic dynamics of NF-κB responses in single living cells. J. Cell Sci. 2010, 123, 2834–2843. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Kalita, M.; Fang, L.; Patel, K.; Tian, B.; Zhao, Y.; Edeh, C.B.; Brasier, A.R. Inducible TNF receptor associated factor-1 expression coules the canonical to the non-canonical NF-κB pathway in TNF stimulation. J. Biol. Chem. 2013, 288, 14612–14623. [Google Scholar] [CrossRef] [PubMed]
- Lipniacki, T.; Paszek, P.; Brasier, A.R.; Luxon, B.A.; Kimmel, M. Stochastic regulation in early immune response. Biophys. J. 2006, 90, 725–742. [Google Scholar] [CrossRef] [PubMed]
- Lipniacki, T.; Puszynski, K.; Paszek, P.; Brasier, A.R. Single TNFα trimers mediating NF-κB activation: Stochastic robustness of NF-κB signaling. BMC Bioinform. 2007, 8, 376. [Google Scholar] [CrossRef] [PubMed]
- Pekalski, J.; Zuk, P.J.; Kochanczyk, M.; Junkin, M.; Kellogg, R.; Tay, S.; Lipniacki, T. Spontaneous NF-κB activation by autocrine TNFα signaling: A computational analysis. PLoS One 2013, 8, e78887. [Google Scholar] [CrossRef] [PubMed]
- Fallahi-Sichani, M.; Kirschner, D.E.; Linderman, J.J. NF-κB Signaling dynamics play a key role in infection control in tuberculosis. Front. Physiol. 2012, 3, 170. [Google Scholar] [CrossRef] [PubMed]
- Ashall, L.; Horton, C.A.; Nelson, D.E.; Paszek, P.; Harper, C.V.; Sillitoe, K.; Ryan, S.; Spiller, D.G.; Unitt, J.F.; Broomhead, D.S.; et al. Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science 2009, 324, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Acerbi, E.; Decraene, J.; Gouaillard, A. Computational reconstruction of biochemical networks. In Proceedings of the 15th International Conference on Information Fusion, Singapore, Singapore, 9–12 July 2012; IEEE: New York, NY, USA, 2012; pp. 1134–1141. [Google Scholar]
- Cohn, M.; Mata, J. Quantitative modeling of immune responses. Immunol. Rev. 2007, 216, 5–8. [Google Scholar] [PubMed]
- Stark, J.; Chan, C.; George, A.J. Oscillations in the immune system. Immunol. Rev. 2007, 216, 213–231. [Google Scholar] [PubMed]
- Kam, N.; Cohen, I.R.; Harel, D. The immune system as a reactive system: Modeling T cell activation with statecharts. In Proceedings of the Symposium on Human Centric Computing Languages and Environments Conference, Stresa, Italy, 5–7 September 2001; IEEE: New York, NY, USA, 2001. [Google Scholar]
- Macal, C.M.; North, M.J. Tutorial on agent-based modeling and simulation. In Proceedings of the Winter Simulation Conference, New Orleans, LA, USA, 4–7 December 2005; Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Jones, J.A., Eds.; ACM: New York, NY, USA, 2005; pp. 2–15. [Google Scholar]
- Pogson, M.; Smallwood, R.; Qwarnstrom, E.E.; Holcombe, M. Formal agent-based modelling of intracellular chemical interactions. BioSystems 2006, 85, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Barnard, J.; Whitworth, J.; Woodward, M. Communicating X-Machines. Inf. Softw. Technol. 1996, 38, 401–407. [Google Scholar] [CrossRef]
- Terry, A.J.; Chaplain, M.A.J. Spatio-temporal modelling of the NF-κB intracellular signalling pathway: The roles of diffusion, active transport, and cell geometry. J. Theor. Biol. 2011, 290, 7–26. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, D.; Inoue, J.I.; Ichikawa, K. Roles of spatial parameters on the oscillation of nuclear NF-κB: Computer simulations of a 3D spherica cell. PLoS One 2012, 7, e46911. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ross, K.; Qwarnstrom, E.E. RelA control of IκBα phosphorylation. J. Biol. Chem. 2003, 278, 30881–30888. [Google Scholar] [CrossRef] [PubMed]
- Barken, D.; Wang, C.J.; Kearns, J.; Cheong, R.; Hoffmann, A.; Levchenko, A. Comment of “oscillations in NF-κB signaling control the dynamics of gene expression”. Science 2005, 308, 52. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.H.; Li, N.; Lao, Q.; Gottschalk, R.A.; Hager, G.L.; Fraser, I.D.C. Switching of the relative dominance between feedback mechanisms in lipopolysaccharide-Induced NF-κB signaling. Sci. Signal. 2014, 7, ra6. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.H.; Salvatore, L.; de Lorenzi, R.; Indrawan, A.; Pasparakis, M.; Hager, G.L.; Bianchi, M.E.; Agresti, A. Sustained oscillations of NF-κB produce distinct genome scanning and gene expression profiles. PLoS One 2009, 4, e7163. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, S.; Bianchi, M.E.; Agresti, A. High-throughput analysis of NF-κB dynamics in single cells reveal basal nuclear localization of NF-κB and spontaneous activation of oscillations. PLoS One 2014, 9, e90104. [Google Scholar] [CrossRef] [PubMed]
- Hayot, F.; Jayaprakash, C. NF-κB oscillations and cell-to-cell variability. J. Theor. Biol. 2006, 240, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Ihekwaba, A.E.C.; Broomhead, D.S.; Grimley, R.L.; Benson, N.; Kell, D.B. Sensitivity analysis of parameters controlling oscillatory signalling in the NF-κB pathway: The roles of IKK and IκBα. Syst. Biol. 2004, 1, 93–103. [Google Scholar] [CrossRef]
- Ihekwaba, A.E.C.; Broomhead, D.S.; Grimley, R.; Benson, N.; White, M.R.; Kell, D.B. Synergistic control of oscillations in the nf-kappab signalling pathway. IEEE Proc. Syst. Biol. 2005, 152, 153–160. [Google Scholar] [CrossRef]
- Mathes, E.; O’Dea, E.L.; Hoffmann, A.; Ghosh, G. NF-κB dictates the degradation pathway of IκBα. EMBO J. 2008, 27, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Paszek, P.; Horton, C.A.; Kell, D.B.; White, M.R.H.; Broomhead, D.S.; Muldoon, M.R. Interactions among oscillatory pathways in NF-κB signalling. BMC Syst. Biol. 2011, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Brown, M.; Knowles, J.; Wang, H.; Broomhead, D.S.; Kell, D.B. Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: A case study of an NF-κB signalling pathway. Mol. BioSyst. 2006, 2, 640–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, J.; Plimpton, S.; Martin, S.; Swiler, L.; Faulon, J.L. Sensitivity analysis of a computational model of the IKK-NF-κB-IκBα-A20 signal transduction network. Wiley: New York, NY, USA, 2007; Volume 1115, pp. 221–239. [Google Scholar]
- Krishna, S.; Jensen, M.H.; Sneppen, K. Minimal model of spiky oscillations in NF-κB signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 10840–10845. [Google Scholar] [CrossRef] [PubMed]
- Yde, P.; Mengel, B.; Jensen, M.H.; Krishna, S.; Trusina, A. Modeling the NF-κB mediated inflammatory response predicts cytokine waves in tissue. BMC Syst. Biol. 2011, 5, 115. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.L.; Barken, D.; Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 2005, 309, 1857–1861. [Google Scholar] [CrossRef] [PubMed]
- Longo, D.M.; Selimkhanov, J.; Kearns, J.D.; Hasty, J.; Hoffmann, A.; Tsimring, L.S. Dual delayed feedback provides sensitivity and robustness to the NF-κB signaling module. PLoS Comput. Biol. 2013, 9, e1003112. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, S.; Bianchi, M.E.; Agresti, A. A simple model of NF-κB dynamics reproduces experimental observations. J. Theor. Biol. 2014, 347, 44–53. [Google Scholar] [CrossRef] [PubMed]
- West, S.; Bridge, L.J.; White, M.R.H.; Paszek, P.; Biktashev, V.N. A method of “speed coefficients” for biochemical model reduction applied to the NF-κB system. J. Math. Biol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, T.D.; Herscovitch, M. Inhibitors of NF-κB signalling: 785 and counting. Oncogene 2006, 25, 6887–6899. [Google Scholar] [CrossRef] [PubMed]
- Luke, S.; Cioffi-Revilla, C.; Panait, L.; Sullivan, K.; Balan, G. MASON: A multi-agent simulation environment. Simulation 2005, 81, 517–527. [Google Scholar] [CrossRef]
- Coakley, S.; Smallwood, R.; Holcombe, M. Using X-machines as a formal basis for describing agents in agent-based modelling. Simul. Ser. 2006, 38, 33–40. [Google Scholar]
- Coakley, S.; Gheorghe, M.; Holcombe, M.; Chin, S.; Worth, D.; Greenough, C. Exploitation of high-performance computing in the FLAME agent-based simulation framework. In Proceedings of the 14th IEEE International Conference on High-Performance Computing and Communications (HPCC), Liverpool, UK, 25–27 June 2012.
- Richmond, P.; Coakley, S.; Romano, D. Cellular level agent-based modelling on the graphics processing unit. In Proceedings of the International Workshop on High-Performance Computational Systems Biology (HiBi’09), Trento, Italy, 14–16 October 2009; IEEE: New York, NY, USA; pp. 43–50.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, R.A.; Timmis, J.; Qwarnstrom, E.E. Computational Models of the NF-KB Signalling Pathway. Computation 2014, 2, 131-158. https://doi.org/10.3390/computation2040131
Williams RA, Timmis J, Qwarnstrom EE. Computational Models of the NF-KB Signalling Pathway. Computation. 2014; 2(4):131-158. https://doi.org/10.3390/computation2040131
Chicago/Turabian StyleWilliams, Richard A., Jon Timmis, and Eva E. Qwarnstrom. 2014. "Computational Models of the NF-KB Signalling Pathway" Computation 2, no. 4: 131-158. https://doi.org/10.3390/computation2040131
APA StyleWilliams, R. A., Timmis, J., & Qwarnstrom, E. E. (2014). Computational Models of the NF-KB Signalling Pathway. Computation, 2(4), 131-158. https://doi.org/10.3390/computation2040131