Fabricating MOF/Polymer Composites via Freeze Casting for Water Remediation
<p>Pore structure by SEM imaging of (<b>A</b>) UiO-66-NO<sub>2</sub> nanoparticles, (<b>B</b>,<b>C</b>) CM/UiO-66-NO<sub>2</sub> (1:1) freeze dried composite, (<b>D</b>,<b>E</b>) CM/UiO-66-NO<sub>2</sub> composite after heat treatment (1:1), (<b>F</b>,<b>G</b>) CM/UiO-66-NO<sub>2</sub> (1:1) composite after base treatment, and (<b>H</b>,<b>I</b>) glutaraldehyde-crosslinked CM/UiO-66 (1:1).</p> "> Figure 2
<p>Profiles of the adsorbed quantity of methylchlorophenoxypropionic acid (MCPP) versus soaking time by dispersing (10 mg) of nanoparticles in 10 mL of aqueous solution of MCPP (60 ppm). Each of the tests in this study were carried out three times.</p> "> Figure 3
<p>Profiles of the adsorbed quantity of MCPP versus soaking time by immersing the composites (10 mg) in 10 mL of aqueous solution of MCPP (60 ppm).</p> "> Figure 4
<p>Absorption profiles of the absorbent materials including UiO-66 nanoparticles, base-treated (BT) medium weight chitosan/UiO-66 (polymer: MOF = 1:1 in mass), and glutaraldehyde (GA)-crosslinked medium weight chitosan/UiO-66 (polymer: MOF = 1:1 in mass) against the soaking time within 60 ppm MCPP solution.</p> "> Figure 5
<p>Reusability of glutaraldehyde-crosslinked CM/UiO-66 (polymer: MOF = 1:1) for the adsorptive removal of MCPP from 10 mL of 60 ppm MCPP aqueous solution.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of UiO-66, UiO-66-NH2 and UiO-NO2 Nanoparticles
2.3. Fabrication of Chitosan/UiO-66 Composites via Freeze Casting
2.4. Post-Treatment of Freeze-Dried Chitosan/UiO-66 Monoliths
2.4.1. Base Treatment
2.4.2. Chemical Crosslinking of Chitosan with Glutaraldehyde
2.5. Water Treatment with MCPP Adsorption
2.6. Material Characterization
3. Results and Discussion
3.1. Freeze-Dried and Post-Treated Chitosan/UiO-66 Composites
3.2. Adsorption of MCPP from Aqueous Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mishra, A.; Clark, J.H. Green Materials for Sustainable Water Remediation and Treatment; The Royal Society of Chemistry: London, UK, 2013. [Google Scholar]
- Tesh, S.J.; Scott, T.B. Nano-Composites for Water Remediation: A Review. Adv. Mater. 2014, 26, 6056–6068. [Google Scholar] [CrossRef] [PubMed]
- Ali, I. New Generation Adsorbents for Water Treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Elam, J.W.; Darling, S.B. Membrane Materials for Water Purification: Design, Development, and Application. Environ. Sci. Water Res. Technol. 2016, 2, 17–42. [Google Scholar] [CrossRef]
- Smith, S.C.; Rodrigues, D.F. Carbon-Based Nanomaterials for Removal of Chemical and Biological Contaminants from Water: A Review of Mechanisms and Applications. Carbon 2015, 91, 122–143. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. A Review of Emerging Adsorbents for Nitrate Removal from Water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Long, J.R.; Yaghi, O.M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal-Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef] [PubMed]
- Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Chemical, Thermal and Mechanical Stabilities of Metal−Organic Frameworks. Nat. Rev. Mater. 2016, 1, 15018. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Hasan, J.; Jhung, S. Removal of Hazardous Organics from Water Using Metal-Organic Frameworks (MOFs): Plausible Mechanisms for Selective Adsorptions. J. Hazard. Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Dias, E.M.; Petit, C. Towards the Use of Metal–Organic Frameworks for Water Reuse: A Review of the Recent Advances in the Field of Organic Pollutants Removal and Degradation and the Next Steps in the Field. J. Mater. Chem. A 2015, 3, 22484–22506. [Google Scholar] [CrossRef]
- Fu, Q.; Wen, L.; Zhang, L.; Chen, X.; Pun, D.; Ahmed, A.; Yang, Y.; Zhang, H. Preparation of Ice-Templated MOF–Polymer Composite Monoliths and Their Application for Wastewater Treatment with High Capacity and Easy Recycling. ACS Appl. Mater. Interfaces 2017, 9, 33979–33988. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.S.; Khan, N.A.; Jhung, S.H. Adsorptive Removal of Methylchlorophenoxypropionic Acid from Water with a Metal-Organic Framework. Chem. Eng. J. 2015, 270, 22–27. [Google Scholar] [CrossRef]
- Ahmed, A.; Forster, M.; Clowes, R.; Myers, P.; Zhang, H. Hierarchical Porous Metal–Organic Framework Monoliths. Chem. Commun. 2014, 50, 14314–14316. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Hasell, T.; Clowes, R.; Myers, P.; Cooper, A.I.; Zhang, H. Aligned Macroporous Monoliths with Intrinsic Microporosity via a Frozen-Solvent-Templating Approach. Chem. Commun. 2015, 51, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef] [PubMed]
- Kitao, T.; Zhang, Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridiation of MOFs and Polymers. Chem. Soc. Rev. 2017, 46, 3108–3133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Ice Templating and Freeze-Drying for Porous Materials and Their Applications; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Deville, S. Freezing Colloids: Observations, Principles, Control, and Use; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Gao, C. Facile Fabrication of the Glutaraldehyde Cross-Linked Collagen/Chitosan Porous Scaffold for Skin Tissue Engineering. Mater. Sci. Eng. C 2012, 32, 2361–2366. [Google Scholar] [CrossRef]
- Clasen, C.; Wilhelms, T.; Kulicke, W.-M. Formation and Characterization of Chitosan Membranes. Biomacromolecules 2006, 7, 3210–3222. [Google Scholar] [CrossRef] [PubMed]
- Coates, J. Interpretation of Infrared Spectra, a Practical Approach. Encycl. Anal. Chem. 2006. [Google Scholar] [CrossRef]
- Pratt, D.Y.; Wilson, L.D.; Kozinski, J.A. Preparation and Sorption Studies of Glutaraldehyde Cross-Linked Chitosan Copolymers. J. Colloid Interface Sci. 2013, 395, 205–211. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogers, C.; Pun, D.; Fu, Q.; Zhang, H. Fabricating MOF/Polymer Composites via Freeze Casting for Water Remediation. Ceramics 2018, 1, 353-363. https://doi.org/10.3390/ceramics1020028
Rogers C, Pun D, Fu Q, Zhang H. Fabricating MOF/Polymer Composites via Freeze Casting for Water Remediation. Ceramics. 2018; 1(2):353-363. https://doi.org/10.3390/ceramics1020028
Chicago/Turabian StyleRogers, Coral, Daniel Pun, Qingshan Fu, and Haifei Zhang. 2018. "Fabricating MOF/Polymer Composites via Freeze Casting for Water Remediation" Ceramics 1, no. 2: 353-363. https://doi.org/10.3390/ceramics1020028
APA StyleRogers, C., Pun, D., Fu, Q., & Zhang, H. (2018). Fabricating MOF/Polymer Composites via Freeze Casting for Water Remediation. Ceramics, 1(2), 353-363. https://doi.org/10.3390/ceramics1020028