Exploring Metabolic Shifts in Kidney Cancer and Non-Cancer Cells Under Pro- and Anti-Apoptotic Treatments Using NMR Metabolomics
<p>NMR metabolic profile of RCC and HK2 cells: (<b>A</b>) Representative <sup>1</sup>H NMR spectrum of RCC cells’ aqueous extracts. (<b>B</b>) Scores scatter plot obtained by PCA of <sup>1</sup>H NMR spectra from RCC and HK2 cells’ aqueous extracts. (<b>C</b>) Scores scatter plot (<b>left</b>) and LV1 loadings (<b>right</b>) obtained by PLS-DA of <sup>1</sup>H NMR spectra from RCC and HK2 cells’ aqueous extracts. (<b>D</b>) Metabolite consumption and secretion patterns of RCC (<b>left</b>) and HK2 cells (<b>right</b>) expressed as % variation relative to acellular medium. Abbreviations: AcAsp, N-acetylaspartate; ADP/ATP, adenosine di/triphosphate; Cr, creatine; Fru, fructose; Glc, glucose; GPC, glycerophosphocholine; GSH, glutathione; m-Ino, myo-inositol; PC, phosphocholine; Put, putrescine; Urd nuc., uridine nucleotides; Tau, taurine. Three-letter codes were used for amino acids.</p> "> Figure 2
<p>Impact of BKA, STAU, and BKA+STAU treatments on RCC cells’ intracellular metabolites: (<b>A</b>) Scores scatter plots obtained by applying PCA (<b>top</b>) and PLS-DA (<b>bottom</b>) to <sup>1</sup>H NMR spectra of RCC cells’ aqueous extracts. (<b>B</b>) Heatmap summarizing the intracellular polar metabolite levels in RCC-treated cells, expressed as % of variation relative to untreated controls. Statistical significance was assessed with respect to untreated controls (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.005, and **** <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>Impact of BKA, STAU, and BKA+STAU treatments on RCC cells’ extracellular metabolites: Relative metabolite levels in acellular medium and in medium conditioned by untreated (Control) and treated cells, as assessed by spectral integration followed by total area normalization and scaling to unit variance. Statistical significance was assessed with respect to untreated controls (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and **** <span class="html-italic">p</span> < 0.001).</p> "> Figure 4
<p>Impact of BKA, STAU, and BKA+STAU treatments on HK2 cells’ intracellular metabolites: (<b>A</b>) Scores scatter plots obtained by applying PCA (<b>top</b>) and PLS-DA (<b>bottom</b>) to <sup>1</sup>H NMR spectra of HK2 cells’ aqueous extracts. (<b>B</b>) Heatmap summarizing the variations in treated cells vs. controls (the metabolites included showed at least one statistically significant variation relative to controls, as assessed by ANOVA, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.005).</p> "> Figure 5
<p>Schematic representation of mitochondria under anti-apoptotic and pro-apoptotic stimuli. (<b>A</b>) Mitochondria in cells under basal conditions (without apoptotic stimuli) or treated with the anti-apoptotic molecule BKA. The schematic highlights representative proteins, pathways, and cycles. Green arrows (up or down) indicate increased or decreased consumption or production of specific metabolites in untreated HK2 cells, respectively. The orange down-arrow indicates decreased metabolite consumption or production in RCC cells treated with BKA, while the violet up-arrow denotes increased metabolite consumption or production in untreated RCC cells. (<b>B</b>) Mitochondria in cells exposed to pro-apoptotic stimuli, specifically STAU or BKA+STAU, which induce the formation of the mitochondrial permeability transition pore (mPTP). Red arrows (up or down) indicate increased or decreased consumption or production of metabolites in RCC cells treated with STAU, respectively, while the dark-blue up-arrow indicates increased consumption or production of metabolites in RCC cells treated with BKA+STAU. Proteins are shown in surface representations using PyMOL, with atomic coordinates derived from the Protein Data Bank (PDB). Protein names are reported in brown boxes for discriminating them from substrates. ATP synthase (CV) is represented in blue (6zqn.pdb), CRAT in orange (1nm8.pdb), BCAT2 in blue–green (5mpr.pdb), and BCKDH in dark magenta–blue (1u5b.pdb). CPT1 and CPT2 are shown in dark violet (4ep9.pdb), and VDAC is represented in pink (2jk4.pdb). Bax and Bak/Bcl-2 are depicted in dark grey and firebrick, respectively (4s0o.pdb, 2yv6.pdb). MPC is shown in black based on an in-house 3D comparative model, PDH is in light green (6cfo.pdb), and AIF is in white (4bur.pdb). Respiratory complexes I–IV are visualized as follows: CI in green (5lnk.pdb), CII in yellow (3aef.pdb), CIII in magenta (6q9e.pdb), and CIV (together with CytC in red) in grey (5iy5.pdb). The 3D comparative models of mitochondrial carriers of the SLC25A family are shown in cyan (based on the bovine ADP/ATP carrier structure 1okc.pdb). Black circular arrows represent cyclic pathways, while black solid and dashed lines indicate reaction directions. Magenta dashed lines highlight the administration of anti-apoptotic (BKA) or pro-apoptotic (STAU) small molecules. Abbreviations: C2-CoA, acetyl-CoA; C2-carnitine, acetyl-carnitine; SC-CoA, short-chain acyl-CoA; LCFA, long-chain fatty acids; BCFA, branched-chain fatty acids; BCKA, branched-chain ketoacids; MIM, mitochondrial inner membrane; MOM, mitochondrial outer membrane; IMS, intermembrane space; UQ, ubiquinone; AAC, ADP/ATP carrier (SLC25A4/5/6/31); TPC, thiamine pyrophosphate carrier (SLC25A19); CAC, carnitine/acyl-carnitine carrier (SLC25A20); AGC, aspartate/glutamate carrier (SLC25A12 and SLC25A13); DIC, dicarboxylate carrier (SLC25A10); NDT, NAD+ carrier (SLC25A51); MFT, FAD carrier (SLC25A32); OGC, malate/2-oxoglutarate carrier (SLC25A11); CIC, citrate carrier (SLC25A1); PiC, phosphate carrier (SLC25A3); CoAC, CoA carrier (SLC25A42); MAS, malate-aspartate shuttle; TCA, tricarboxylic acid cycle; Bax, Bcl-2-associated X protein; Bak, Bcl-2 antagonist/killer-1; Bcl-2, B-cell lymphoma-2; MDH1, cytosolic malate dehydrogenase 1; ME1, malic enzyme 1; MPC, mitochondrial pyruvate carrier; PDH, pyruvate dehydrogenase; CypD, cyclophilin D; CytC, cytochrome C; VDAC, voltage-dependent anion channel; AIF, apoptosis-inducing factor; PNC, pyrimidine nucleotide carrier (SLC25A33 and SLC25A36).</p> "> Figure 5 Cont.
<p>Schematic representation of mitochondria under anti-apoptotic and pro-apoptotic stimuli. (<b>A</b>) Mitochondria in cells under basal conditions (without apoptotic stimuli) or treated with the anti-apoptotic molecule BKA. The schematic highlights representative proteins, pathways, and cycles. Green arrows (up or down) indicate increased or decreased consumption or production of specific metabolites in untreated HK2 cells, respectively. The orange down-arrow indicates decreased metabolite consumption or production in RCC cells treated with BKA, while the violet up-arrow denotes increased metabolite consumption or production in untreated RCC cells. (<b>B</b>) Mitochondria in cells exposed to pro-apoptotic stimuli, specifically STAU or BKA+STAU, which induce the formation of the mitochondrial permeability transition pore (mPTP). Red arrows (up or down) indicate increased or decreased consumption or production of metabolites in RCC cells treated with STAU, respectively, while the dark-blue up-arrow indicates increased consumption or production of metabolites in RCC cells treated with BKA+STAU. Proteins are shown in surface representations using PyMOL, with atomic coordinates derived from the Protein Data Bank (PDB). Protein names are reported in brown boxes for discriminating them from substrates. ATP synthase (CV) is represented in blue (6zqn.pdb), CRAT in orange (1nm8.pdb), BCAT2 in blue–green (5mpr.pdb), and BCKDH in dark magenta–blue (1u5b.pdb). CPT1 and CPT2 are shown in dark violet (4ep9.pdb), and VDAC is represented in pink (2jk4.pdb). Bax and Bak/Bcl-2 are depicted in dark grey and firebrick, respectively (4s0o.pdb, 2yv6.pdb). MPC is shown in black based on an in-house 3D comparative model, PDH is in light green (6cfo.pdb), and AIF is in white (4bur.pdb). Respiratory complexes I–IV are visualized as follows: CI in green (5lnk.pdb), CII in yellow (3aef.pdb), CIII in magenta (6q9e.pdb), and CIV (together with CytC in red) in grey (5iy5.pdb). The 3D comparative models of mitochondrial carriers of the SLC25A family are shown in cyan (based on the bovine ADP/ATP carrier structure 1okc.pdb). Black circular arrows represent cyclic pathways, while black solid and dashed lines indicate reaction directions. Magenta dashed lines highlight the administration of anti-apoptotic (BKA) or pro-apoptotic (STAU) small molecules. Abbreviations: C2-CoA, acetyl-CoA; C2-carnitine, acetyl-carnitine; SC-CoA, short-chain acyl-CoA; LCFA, long-chain fatty acids; BCFA, branched-chain fatty acids; BCKA, branched-chain ketoacids; MIM, mitochondrial inner membrane; MOM, mitochondrial outer membrane; IMS, intermembrane space; UQ, ubiquinone; AAC, ADP/ATP carrier (SLC25A4/5/6/31); TPC, thiamine pyrophosphate carrier (SLC25A19); CAC, carnitine/acyl-carnitine carrier (SLC25A20); AGC, aspartate/glutamate carrier (SLC25A12 and SLC25A13); DIC, dicarboxylate carrier (SLC25A10); NDT, NAD+ carrier (SLC25A51); MFT, FAD carrier (SLC25A32); OGC, malate/2-oxoglutarate carrier (SLC25A11); CIC, citrate carrier (SLC25A1); PiC, phosphate carrier (SLC25A3); CoAC, CoA carrier (SLC25A42); MAS, malate-aspartate shuttle; TCA, tricarboxylic acid cycle; Bax, Bcl-2-associated X protein; Bak, Bcl-2 antagonist/killer-1; Bcl-2, B-cell lymphoma-2; MDH1, cytosolic malate dehydrogenase 1; ME1, malic enzyme 1; MPC, mitochondrial pyruvate carrier; PDH, pyruvate dehydrogenase; CypD, cyclophilin D; CytC, cytochrome C; VDAC, voltage-dependent anion channel; AIF, apoptosis-inducing factor; PNC, pyrimidine nucleotide carrier (SLC25A33 and SLC25A36).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Exposure for Metabolomics Assays
2.3. Extraction of Intracellular and Extracellular Metabolites
2.4. NMR Data Acquisition and Processing
2.5. Multivariate and Univariate Statistical Analysis
3. Results
3.1. Comparison of RCC and HK2 Metabolic Profiles
3.2. Impact of BKA, STAU, and BKA+STAU Treatments on RCC Cells
3.3. Impact of BKA, STAU, and BKA+STAU Treatments on HK2 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, S.; Kanwar, S.S. Biomarkers in Renal Cell Carcinoma and Their Targeted Therapies: A Review. Explor. Target. Antitumor Ther. 2023, 4, 941–961. [Google Scholar] [CrossRef]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor Biomarkers for Diagnosis, Prognosis and Targeted Therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Suri, G.S.; Kaur, G.; Carbone, G.M.; Shinde, D. Metabolomics in Oncology. Cancer Rep. 2023, 6, e1795. [Google Scholar] [CrossRef]
- Perrone, M.G.; Luisi, O.; De Grassi, A.; Ferorelli, S.; Cormio, G.; Scilimati, A. Translational Theragnosis of Ovarian Cancer: Where Do We Stand? Curr. Med. Chem. 2019, 27, 5675–5715. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Omura, S. Chemical Biology of Natural Indolocarbazole Products: 30 Years since the Discovery of Staurosporine. J. Antibiot. 2009, 62, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.C.; Steen, H.; Öllinger, K.; Roberg, K. Cathepsin D Mediates Cytochrome c Release and Caspase Activation in Human Fibroblast Apoptosis Induced by Staurosporine. Cell Death Differ. 2003, 10, 1253–1259. [Google Scholar] [CrossRef]
- Luetjens, C.M.; Kögel, D.; Reimertz, C.; Düßmann, H.; Renz, A.; Schulze-Osthoff, K.; Nieminen, A.L.; Poppe, M.; Prehn, J.H.M. Multiple Kinetics of Mitochondrial Cytochrome c Release in Drug-Induced Apoptosis. Mol. Pharmacol. 2001, 60, 1008–1019. [Google Scholar] [CrossRef]
- Kiselevsky, D.B. Granzymes and Mitochondria. Biochemistry 2020, 85, 131–139. [Google Scholar] [CrossRef]
- Yadav, N.; Gogada, R.; O’Malley, J.; Gundampati, R.K.; Jayanthi, S.; Hashmi, S.; Lella, R.; Zhang, D.; Wang, J.; Kumar, R.; et al. Molecular Insights on Cytochrome c and Nucleotide Regulation of Apoptosome Function and Its Implication in Cancer. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118573. [Google Scholar] [CrossRef]
- Todisco, S.; Di Noia, M.A.; Onofrio, A.; Parisi, G.; Punzi, G.; Redavid, G.; De Grassi, A.; Pierri, C.L. Identification of New Highly Selective Inhibitors of the Human ADP/ATP Carriers by Molecular Docking and in Vitro Transport Assays. Biochem. Pharmacol. 2016, 100, 112–132. [Google Scholar] [CrossRef]
- Klingenberg, M. The ADP and ATP Transport in Mitochondria and Its Carrier. Biochim. Biophys. Acta 2008, 1778, 1978–2021. [Google Scholar] [CrossRef] [PubMed]
- Trisolini, L.; Laera, L.; Favia, M.; Muscella, A.; Castegna, A.; Pesce, V.; Guerra, L.; De Grassi, A.; Volpicella, M.; Pierri, C.L. Differential Expression of ADP/ATP Carriers as a Biomarker of Metabolic Remodeling and Survival in Kidney Cancers. Biomolecules 2021, 11, 38. [Google Scholar] [CrossRef]
- Bernardi, P.; Gerle, C.; Halestrap, A.P.; Jonas, E.A.; Karch, J.; Mnatsakanyan, N.; Pavlov, E.; Sheu, S.S.; Soukas, A.A. Identity, Structure, and Function of the Mitochondrial Permeability Transition Pore: Controversies, Consensus, Recent Advances, and Future Directions. Cell Death Differ. 2023, 30, 1869–1885. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, M. Cardiolipin and Mitochondrial Carriers. Biochim. Biophys. Acta 2009, 1788, 2048–2058. [Google Scholar] [CrossRef]
- Haworth, R.A.; Hunter, D.R.M. Control of the Mitochondrial Permeability Transition Pore by High-Affinity ADP Binding at the ADP/ATP Translocase in Permeabilized Mitochondria. J. Bioenerg. Biomembr. 2000, 32, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.J.; Johnson, G.; Kirk, J.; Fuerstenberg, S.M.; Zager, R.A.; Torok-Storb, B. HK-2: An Immortalized Proximal Tubule Epithelial Cell Line from Normal Adult Human Kidney. Kidney Int. 1994, 45, 48–57. [Google Scholar] [CrossRef]
- Mossoba, M.E.; Sprando, R.L. In Vitro to In Vivo Concordance of Toxicity Using the Human Proximal Tubule Cell Line HK-2. Int. J. Toxicol. 2020, 39, 452–464. [Google Scholar] [CrossRef]
- Deelen, J.; Kettunen, J.; Fischer, K.; van der Spek, A.; Trompet, S.; Kastenmüller, G.; Boyd, A.; Zierer, J.; van den Akker, E.B.; Ala-Korpela, M.; et al. A Metabolic Profile of All-Cause Mortality Risk Identified in an Observational Study of 44,168 Individuals. Nat. Commun. 2019, 10, 3346. [Google Scholar] [CrossRef]
- Vignoli, A.; Tenori, L.; Giusti, B.; Takis, P.G.; Valente, S.; Carrabba, N.; Balzi, D.; Barchielli, A.; Marchionni, N.; Gensini, G.F.; et al. NMR-Based Metabolomics Identifies Patients at High Risk of Death within Two Years after Acute Myocardial Infarction in the AMI-Florence II Cohort. BMC Med. 2019, 10, 3346. [Google Scholar] [CrossRef]
- Caratozzolo, M.F.; Valletti, A.; Gigante, M.; Aiello, I.; Mastropasqua, F.; Marzano, F.; Ditonno, P.; Carrieri, G.; Simonnet, H.; D’Erchia, A.M.; et al. TRIM8 Anti-Proliferative Action against Chemo-Resistant Renal Cell Carcinoma. Oncotarget 2014, 5, 7446–7457. [Google Scholar] [CrossRef]
- Bertrand, R.; Solary, E.; O’Connor, P.; Kohn, K.W.; Pommier, Y. Induction of a Common Pathway of Apoptosis by Staurosporine. Exp. Cell Res. 1994, 211, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Teng, Q.; Huang, W.; Collette, T.W.; Ekman, D.R.; Tan, C. A Direct Cell Quenching Method for Cell-Culture Based Metabolomics. Metabolomics 2009, 5, 199–208. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Nilsson, H.; Lindgren, D.; Mandahl Forsberg, A.; Mulder, H.; Axelson, H.; Johansson, M.E. Primary Clear Cell Renal Carcinoma Cells Display Minimal Mitochondrial Respiratory Capacity Resulting in Pronounced Sensitivity to Glycolytic Inhibition by 3-Bromopyruvate. Cell Death Dis. 2015, 6, e1585. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, E.N.; DeHart, D.N.; Patnaik, J.; Klatt, S.C.; Gooz, M.B.; Lemasters, J.J. ATP/ADP Turnover and Import of Glycolytic ATP into Mitochondria in Cancer Cells Is Independent of the Adenine Nucleotide Translocator. J. Biol. Chem. 2016, 291, 19642–19650. [Google Scholar] [CrossRef]
- Zheng, J. Energy Metabolism of Cancer: Glycolysis versus Oxidative Phosphorylation (Review). Oncol. Lett. 2012, 4, 1151–1157. [Google Scholar] [CrossRef]
- Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef]
- Amoedo, N.D.; Punzi, G.; Obre, E.; Lacombe, D.; De Grassi, A.; Pierri, C.L.; Rossignol, R. AGC1/2, the Mitochondrial Aspartate-Glutamate Carriers. Biochim. Biophys. Acta 2016, 1863, 2394–2412. [Google Scholar] [CrossRef]
- Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of Glutathione in Cancer Progression and Chemoresistance. Oxid. Med. Cell. Longev. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Kreider, R.B.; Stout, J.R.; Forero, D.A.; Kerksick, C.M.; Roberts, M.D.; Rawson, E.S. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021, 13, 1238. [Google Scholar] [CrossRef]
- Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The Creatine Kinase System and Pleiotropic Effects of Creatine. Amino Acids 2011, 40, 1271–1296. [Google Scholar] [CrossRef] [PubMed]
- Tie, P.; Cheng, J.; Xue, M.-X.; Yin, J.; Fu, G.; Duan, W.-L. SLC18A3 Promoted Renal Cancer Development through Acetylcholine/CAMP Signaling. Am. J. Cancer Res. 2022, 12, 4279–4289. [Google Scholar]
- Mori, N.; Wildes, F.; Takagi, T.; Glunde, K.; Bhujwalla, Z.M. The Tumor Microenvironment Modulates Choline and Lipid Metabolism. Front. Oncol. 2016, 6, 262. [Google Scholar] [CrossRef]
- Chakraborty, S.; Balan, M.; Sabarwal, A.; Choueiri, T.K.; Pal, S. Metabolic Reprogramming in Renal Cancer: Events of a Metabolic Disease. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188559. [Google Scholar] [CrossRef] [PubMed]
- Massari, F.; Ciccarese, C.; Santoni, M.; Brunelli, M.; Piva, F.; Modena, A.; Bimbatti, D.; Fantinel, E.; Santini, D.; Cheng, L.; et al. Metabolic Alterations in Renal Cell Carcinoma. Cancer Treat. Rev. 2015, 41, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, L.; Gao, M.; Dai, M.; Zheng, Y.; Qu, L.; Zhang, J.; Gong, G. A Comparative Study of the Efficiency of Mitochondria-Targeted Antioxidants MitoTEMPO and SKQ1 under Oxidative Stress. Free Radic. Biol. Med. 2024, 224, 117–129. [Google Scholar] [CrossRef]
- Pokkunuri, I.D.; Lokhandwala, M.F.; Banday, A.A. Protein Disulfide Isomerase Inhibition Impairs Keap1/Nrf2 Signaling and Mitochondrial Function and Induces Apoptosis in Renal Proximal Tubular Cells. Am. J. Physiol. Ren. Physiol. 2020, 319, F686–F696. [Google Scholar] [CrossRef]
- An, X.; Yu, W.; Liu, J.; Tang, D.; Yang, L.; Chen, X. Oxidative Cell Death in Cancer: Mechanisms and Therapeutic Opportunities. Cell Death Dis. 2024, 15, 556. [Google Scholar] [CrossRef]
- Klingenberg, M. The State of ADP or ATP Fixed to the Mitochondria by Bongkrekate. Eur. J. Biochem. 1976, 65, 601–605. [Google Scholar] [CrossRef]
- Petrosillo, G.; Casanova, G.; Matera, M.; Ruggiero, F.M.; Paradies, G. Interaction of Peroxidized Cardiolipin with Rat-Heart Mitochondrial Membranes: Induction of Permeability Transition and Cytochrome c Release. FEBS Lett. 2006, 580, 6311–6316. [Google Scholar] [CrossRef]
- Halestrap, A.P.; Brenner, C. The Adenine Nucleotide Translocase: A Central Component of the Mitochondrial Permeability Transition Pore and Key Player in Cell Death. Curr. Med. Chem. 2003, 10, 1507–1525. [Google Scholar] [CrossRef]
- Neginskaya, M.A.; Solesio, M.E.; Berezhnaya, E.V.; Amodeo, G.F.; Mnatsakanyan, N.; Jonas, E.A.; Pavlov, E.V. ATP Synthase C-Subunit-Deficient Mitochondria Have a Small Cyclosporine A-Sensitive Channel, but Lack the Permeability Transition Pore. Cell Rep. 2019, 26, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Nesci, S. A Lethal Channel between the ATP Synthase Monomers. Trends Biochem. Sci. 2018, 43, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Malsy, M.; Bitzinger, D.; Graf, B.; Bundscherer, A. Staurosporine Induces Apoptosis in Pancreatic Carcinoma Cells PaTu 8988t and Panc-1 via the Intrinsic Signaling Pathway. Eur. J. Med. Res. 2019, 24, 5. [Google Scholar] [CrossRef]
- Zhang, X.D.; Gillespie, S.K.; Hersey, P. Staurosporine Induces Apoptosis of Melanoma by Both Caspase-Dependent and -Independent Apoptotic Pathways. Mol. Cancer Ther. 2004, 3, 187–197. [Google Scholar] [CrossRef]
- Belmokhtar, C.A.; Hillion, J.; Ségal-Bendirdjian, E. Staurosporine Induces Apoptosis through Both Caspase-Dependent and Caspase-Independent Mechanisms. Oncogene 2001, 20, 3354–3362. [Google Scholar] [CrossRef] [PubMed]
- Bossy-Wetzel, E.; Newmeyer, D.D.; Green, D.R. Mitochondrial Cytochrome c Release in Apoptosis Occurs Upstream of DEVD-Specific Caspase Activation and Independently of Mitochondrial Transmembrane Depolarization. EMBO J. 1998, 17, 37–49. [Google Scholar] [CrossRef]
- Ichas, F.; Jouaville, L.S.; Mazat, J.P. Mitochondria Are Excitable Organelles Capable of Generating and Conveying Electrical and Calcium Signals. Cell 1997, 89, 1145–1153. [Google Scholar] [CrossRef]
- Todisco, S.; Musio, B.; Pesce, V.; Cavalluzzi, M.M.; Petrosillo, G.; La Piana, G.; Sgobba, M.N.; Schlosserová, N.; Cafferati Beltrame, L.; Di Lorenzo, R.; et al. Targeting Mitochondrial Impairment for the Treatment of Cardiovascular Diseases: From Hypertension to Ischemia-Reperfusion Injury, Searching for New Pharmacological Targets. Biochem. Pharmacol. 2023, 208, 115405. [Google Scholar] [CrossRef]
- Halestrap, A.P.; Richardson, A.P. The Mitochondrial Permeability Transition: A Current Perspective on Its Identity and Role in Ischaemia/Reperfusion Injury. J. Mol. Cell. Cardiol. 2015, 78, 129–141. [Google Scholar] [CrossRef]
- Halestrap, A.P.; McStay, G.P.; Clarke, S.J. The Permeability Transition Pore Complex: Another View. Biochimie 2002, 84, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Antonsson, A.; Persson, J.L. Induction of Apoptosis by Staurosporine Involves the Inhibition of Expression of the Major Cell Cycle Proteins at the G2/M Checkpoint Accompanied by Alterations in Erk and Akt Kinase Activities. Anticancer Res. 2009, 29, 2893–2898. [Google Scholar] [PubMed]
- Krishnan, N.; Dickman, M.B.; Becker, D.F. Proline Modulates the Intracellular Redox Environment and Protects Mammalian Cells against Oxidative Stress. Free Radic. Biol. Med. 2008, 44, 671–681. [Google Scholar] [CrossRef]
- Matés, J.M.; Pérez-Gómez, C.; De Castro, I.N.; Asenjo, M.; Márquez, J. Glutamine and Its Relationship with Intracellular Redox Status, Oxidative Stress and Cell Proliferation/Death. Int. J. Biochem. Cell Biol. 2002, 34, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Llopis, J.; Deveraux, Q.L.; Tsien, R.Y.; Reed, J.C. Changes in Intramitochondrial and Cytosolic PH: Early Events That Modulate Caspase Activation during Apoptosis. Nat. Cell Biol. 2000, 2, 318–325. [Google Scholar] [CrossRef]
- Gallerne, C.; Touat, Z.; Chen, Z.X.; Martel, C.; Mayola, E.; Sharaf el dein, O.; Buron, N.; Le Bras, M.; Jacotot, E.; Borgne-Sanchez, A.; et al. The Fourth Isoform of the Adenine Nucleotide Translocator Inhibits Mitochondrial Apoptosis in Cancer Cells. Int. J. Biochem. Cell Biol. 2010, 42, 623–629. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trisolini, L.; Musio, B.; Teixeira, B.; Sgobba, M.N.; Francavilla, A.L.; Volpicella, M.; Guerra, L.; De Grassi, A.; Gallo, V.; Duarte, I.F.; et al. Exploring Metabolic Shifts in Kidney Cancer and Non-Cancer Cells Under Pro- and Anti-Apoptotic Treatments Using NMR Metabolomics. Cells 2025, 14, 367. https://doi.org/10.3390/cells14050367
Trisolini L, Musio B, Teixeira B, Sgobba MN, Francavilla AL, Volpicella M, Guerra L, De Grassi A, Gallo V, Duarte IF, et al. Exploring Metabolic Shifts in Kidney Cancer and Non-Cancer Cells Under Pro- and Anti-Apoptotic Treatments Using NMR Metabolomics. Cells. 2025; 14(5):367. https://doi.org/10.3390/cells14050367
Chicago/Turabian StyleTrisolini, Lucia, Biagia Musio, Beatriz Teixeira, Maria Noemi Sgobba, Anna Lucia Francavilla, Mariateresa Volpicella, Lorenzo Guerra, Anna De Grassi, Vito Gallo, Iola F. Duarte, and et al. 2025. "Exploring Metabolic Shifts in Kidney Cancer and Non-Cancer Cells Under Pro- and Anti-Apoptotic Treatments Using NMR Metabolomics" Cells 14, no. 5: 367. https://doi.org/10.3390/cells14050367
APA StyleTrisolini, L., Musio, B., Teixeira, B., Sgobba, M. N., Francavilla, A. L., Volpicella, M., Guerra, L., De Grassi, A., Gallo, V., Duarte, I. F., & Pierri, C. L. (2025). Exploring Metabolic Shifts in Kidney Cancer and Non-Cancer Cells Under Pro- and Anti-Apoptotic Treatments Using NMR Metabolomics. Cells, 14(5), 367. https://doi.org/10.3390/cells14050367