The Application of Gene Expression Profiling in Predictions of Occult Lymph Node Metastasis in Colorectal Cancer Patients
Abstract
:1. Introduction
2. Pathogenesis of CRC
- (1)
- A model that consists of three molecular subtypes including:
- (2)
- A model of four consensus molecular subtypes (CMSs). The members of this model show the following discriminating features:
- (a)
- CMS1 (14%), microsatellite instability (MSI) and immune hyperactivation,
- (b)
- CMS2 (37%), epithelial involvement, wingless-type MMTV integration site family member (WNT) and MYC pathway interaction,
- (c)
- CMS3 (13%), epithelial and metabolic involvement,
- (d)
- CMS4 (23%), invasive and metastatic activation of transforming growth factor–β (TGF-β) [12].
3. Gene Expression Profiling
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Freeman, H.J. Early stage colon cancer. World J. Gastroenterol. WJG 2013, 19, 8468. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.J.; Lin, P.C.; Lin, C.C.; Wang, H.S.; Yang, S.H.; Jiang, J.K.; Lan, Y.T.; Lin, T.C.; Liang, W.Y.; Chen, W.S.; et al. The impact of the lymph node ratio is greater than traditional lymph node status in stage III colorectal cancer patients. World J. Surg. 2013, 37, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Ong, M.L.H.; Schofield, J.B. Assessment of lymph node involvement in colorectal cancer. World J. Gastrointest. Surg. 2016, 8, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Goel, G. Evolving role of gene expression signatures as biomarkers in early-stage colon cancer. J. Gastrointest. Cancer 2014, 45, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Uribarrena-Amezaga, R.; Ortego, J.; Fuentes, J.; Raventos, N.; Parra, P.; Uribarrena-Echevarría, R. Prognostic value of lymph node micrometastases in patients with colorectal cancer in dukes stages a and b (t1–t4, n0, m0). Rev. Esp. Enferm. Dig. 2010, 102, 176. [Google Scholar] [CrossRef] [PubMed]
- Barresi, V.; Bonetti, L.R.; Vitarelli, E.; Di Gregorio, C.; de Leon, M.P.; Barresi, G. Immunohistochemical assessment of lymphovascular invasion in stage I colorectal carcinoma: Prognostic relevance and correlation with nodal micrometastases. Am. J. Surg. Pathol. 2012, 36, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Reggiani Bonetti, L.; Di Gregorio, C.; De Gaetani, C.; Pezzi, A.; Barresi, G.; Barresi, V.; Roncucci, L.; Ponz de Leon, M. Lymph node micrometastasis and survival of patients with stage I (dukes’ a) colorectal carcinoma. Scand. J. Gastroenterol. 2011, 46, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, H.; Kuroda, H.; Imai, Y.; Hiraishi, H. Molecular pathogenesis of sporadic colorectal cancers. Chin. J. Cancer 2016, 35, 4. [Google Scholar] [CrossRef] [PubMed]
- Mojarad, E.N.; Kashfi, S.M.H.; Mirtalebi, H.; Almasi, S.; Chaleshi, V.; Farahani, R.K.; Tarban, P.; Molaei, M.; Zali, M.R.; Kuppen, P.J. Prognostic significance of nuclear β-catenin expression in patients with colorectal cancer from Iran. Iran. Red Crescent Med. J. 2015, 17, e22324. [Google Scholar]
- Mojarad, E.N.; Kuppen, P.J.; Aghdaei, H.A.; Zali, M.R. The CPG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol. Hepatol. Bed Bench 2013, 6, 120. [Google Scholar]
- Mojarad, E.N.; Kashfi, S.M.H.; Mirtalebi, H.; Taleghani, M.Y.; Azimzadeh, P.; Savabkar, S.; Pourhoseingholi, M.A.; Jalaeikhoo, H.; Asadzadeh Aghdaei, H.; Kuppen, P.J.; et al. Low level of microsatellite instability correlates with poor clinical prognosis in stage II colorectal cancer patients. J. Oncol. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; De Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350. [Google Scholar] [CrossRef] [PubMed]
- Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention. Int. J. Mol. Sci. 2013, 14, 16365–16385. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Majumdar, A.P. Signaling in colon cancer stem cells. J. Mol. Signal. 2012, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Basic Immunology: Functions and Disorders of the Immune System; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Calon, A.; Tauriello, D.; Batlle, E. In TGF-beta in CAF-mediated tumour growth and metastasis. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 15–22. [Google Scholar]
- Pickup, M.; Novitskiy, S.; Moses, H.L. The roles of TGFβ in the tumour microenvironment. Nat. Rev. Cancer 2013, 13, nrc3603. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Hui, K.M. Emergence of Aspirin as a Promising Chemo-Preventive and Chemotherapeutic Agent for Liver Cancer; Nature Publishing Group: London, UK, 2017. [Google Scholar]
- Simone, N.L.; Soule, B.P.; Ly, D.; Saleh, A.D.; Savage, J.E.; DeGraff, W.; Cook, J.; Harris, C.C.; Gius, D.; Mitchell, J.B. Ionizing radiation-induced oxidative stress alters mirna expression. PLoS ONE 2009, 4, e6377. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Pallone, F.; Monteleone, G.; Fantini, M.C. Intestinal inflammation and colorectal cancer: A double-edged sword? World J. Gastroenterol. WJG 2011, 17, 3092. [Google Scholar] [PubMed]
- Arango, D.; Laiho, P.; Kokko, A.; Alhopuro, P.; Sammalkorpi, H.; Salovaara, R.; Nicorici, D.; Hautaniemi, S.; Alazzouzi, H.; Mecklin, J.P.; et al. Gene-expression profiling predicts recurrence in dukes’ c colorectal cancer. Gastroenterology 2005, 129, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, F.; Salas, S.; Eysteries, S.; Nasser, V.; Finetti, P.; Ginestier, C.; Charafe-Jauffret, E.; Loriod, B.; Bachelart, L.; Montfort, J.M. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 2004, 23, 1377. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kobunai, T.; Yamamoto, Y.; Matsuda, K.; Ishihara, S.; Nozawa, K.; Iinuma, H.; Kanazawa, T.; Tanaka, T.; Konishi, T.; et al. Gene expression of mesenchyme forkhead 1 (foxc2) significantly correlates with the degree of lymph node metastasis in colorectal cancer. Int. Surg. 2011, 96, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kobunai, T.; Tanaka, T.; Ishihara, S.; Matsuda, K.; Nagawa, H. Gene expression signature and the prediction of lymph node metastasis in colorectal cancer by DNA microarray. Dis. Colon Rectum 2009, 52, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kobunai, T.; Sakamoto, E.; Yamamoto, Y.; Konishi, T.; Horiuchi, A.; Shimada, R.; Oka, T.; Nagawa, H. Gene expression signature for recurrence in stage III colorectal cancers. Cancer 2009, 115, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jatkoe, T.; Zhang, Y.; Mutch, M.G.; Talantov, D.; Jiang, J.; McLeod, H.L.; Atkins, D. Gene expression profiles and molecular markers to predict recurrence of dukes’ b colon cancer. J. Clin. Oncol. 2004, 22, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Roepman, P.; Capella, G.; Moreno, V.; Simon, I.; Dreezen, C.; Lopez-Doriga, A.; Santos, C.; Marijnen, C.; Westerga, J.; et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J. Clin. Oncol. 2010, 29, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Meeh, P.F.; Farrell, C.L.; Croshaw, R.; Crimm, H.; Miller, S.K.; Oroian, D.; Kowli, S.; Zhu, J.; Carver, W.; Wu, W.; et al. A gene expression classifier of node-positive colorectal cancer. Neoplasia 2009, 11, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Lenehan, P.F.; Boardman, L.A.; Riegert-Johnson, D.; De Petris, G.; Fry, D.W.; Ohrnberger, J.; Heyman, E.R.; Gerard, B.; Almal, A.A.; Worzel, W.P. Generation and external validation of a tumour-derived 5-gene prognostic signature for recurrence of lymph node-negative, invasive colorectal carcinoma. Cancer 2012, 118, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.C.; Kim, S.H.; Roh, M.S.; Kim, J.S.; Lee, H.S.; Choi, H.J.; Jeong, J.S.; Kim, H.J.; Hwang, T.H. Gene expression profiling in lymph node-positive and lymph node-negative colorectal cancer. Dis. Colon Rectum 2004, 47, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; et al. Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med. 2013, 10, e1001453. [Google Scholar] [CrossRef] [PubMed]
- Becht, E.; de Reyniès, A.; Giraldo, N.A.; Pilati, C.; Buttard, B.; Lacroix, L.; Selves, J.; Sautès-Fridman, C.; Laurent-Puig, P.; Fridman, W.H. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin. Cancer Res. 2016, 22, 4057–4066. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Takahashi, S.; Soeda, H.; Shimodaira, H.; Watanabe, M.; Miura, K.; Sasaki, I.; Kato, S.; Ishioka, C. Gene-expression profiles correlate with the efficacy of anti-EGFR therapy and chemotherapy for colorectal cancer. Int. J. Clin. Oncol. 2015, 20, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Vishnubalaji, R.; Hamam, R.; Abdulla, M.; Mohammed, M.; Kassem, M.; Al-Obeed, O.; Aldahmash, A.; Alajez, N. Genome-wide mRNA and miRNA expression profiling reveal multiple regulatory networks in colorectal cancer. Cell Death Dis. 2015, 6, e1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, A.; Yu, P.; Lin, W.; Okugawa, Y.; Boland, C.R.; Goel, A. A RNA-sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci. Rep. 2018, 8, 575. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.N.; Choi, T.G.; Nguyen, D.T.; Kim, J.H.; Jo, Y.H.; Shahid, M.; Akter, S.; Aryal, S.N.; Yoo, J.Y.; Ahn, Y.J.; et al. Crc-113 gene expression signature for predicting prognosis in patients with colorectal cancer. Oncotarget 2015, 6, 31674. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Tibiche, C.; Zou, J.; Zaman, N.; Trifiro, M.; O’Connor-McCourt, M.; Wang, E. Identification and construction of combinatory cancer hallmark–Based gene signature sets to predict recurrence and chemotherapy benefit in stage II colorectal cancer. JAMA Oncol. 2016, 2, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Courtois, E.T.; Sengupta, D.; Tan, Y.; Chen, K.H.; Goh, J.J.L.; Kong, S.L.; Chua, C.; Hon, L.K.; Tan, W.S.; et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumours. Nat. Genet. 2017, 49, 708. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, K.; Bilchik, A.J.; Saha, S.; Turner, R.R.; Wiese, D.; McCarter, M.; Shen, P.; Deacon, L.; Elashoff, D.; Hoon, D.S. Prognostic relevance of occult nodal micrometastases and circulating tumour cells in colorectal cancer in a prospective multicenter trial. Clin. Cancer Res. 2008, 14, 7391–7396. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Yasuda, K.; Inomata, M.; Shiraishi, N.; Yokoyama, S.; Kitano, S. Biological predictors of survival in stage II colorectal cancer. Mol. Clin. Oncol. 2013, 1, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Chibon, F. Cancer gene expression signatures—The rise and fall? Eur. J. Cancer 2013, 49, 2000–2009. [Google Scholar] [CrossRef] [PubMed]
- Grimmig, T.; Kim, M.; Germer, C.T.; Gasser, M.; Waaga-Gasser, M.A. The role of foxp3 in disease progression in colorectal cancer patients. Oncoimmunology 2013, 2, e24521. [Google Scholar] [CrossRef] [PubMed]
- Maak, M.; Simon, I.; Nitsche, U.; Roepman, P.; Snel, M.; Glas, A.M.; Schuster, T.; Keller, G.; Zeestraten, E.; Goossens, I.; et al. Independent validation of a prognostic genomic signature (coloprint) for patients with stage II colon cancer. Ann. Surg. 2013, 257, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Ganepola, G.A.; Nizin, J.; Rutledge, J.R.; Chang, D.H. Use of blood-based biomarkers for early diagnosis and surveillance of colorectal cancer. World J. Gastrointest. Oncol. 2014, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Méndez, E.; Lohavanichbutr, P.; Fan, W.; Houck, J.R.; Rue, T.C.; Doody, D.R.; Futran, N.D.; Upton, M.P.; Yueh, B.; Zhao, L.P.; et al. Can a metastatic gene expression profile outperform tumour size as a predictor of occult lymph node metastasis in oral cancer patients? Clin. Cancer Res. 2011, 17, 2466–2473. [Google Scholar] [CrossRef] [PubMed]
- Dancik, G.; Aisner, D.; Theodorescu, D. A 20 gene model for predicting nodal involvement in bladder cancer patients with muscle invasive tumours. PLoS Curr. 2011, 3. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Lyons-Weiler, J.; Coello, M.C.; Huang, X.; Gooding, W.E.; Luketich, J.D.; Godfrey, T.E. Prediction of lymph node metastasis by analysis of gene expression profiles in primary lung adenocarcinomas. Clin. Cancer Res. 2005, 11, 4128–4135. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Choi, D.W.; Lee, K.T.; Lee, J.K.; Heo, J.S.; Choi, S.-H.; Paik, S.W.; Rhee, J.C.; Lowe, A.W. Gene expression profiling in lymph node-positive and lymph node-negative pancreatic cancer. Pancreas 2007, 34, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Cobleigh, M.A.; Tabesh, B.; Bitterman, P.; Baker, J.; Cronin, M.; Liu, M.L.; Borchik, R.; Mosquera, J.M.; Walker, M.G.; Shak, S. Tumour gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin. Cancer Res. 2005, 11, 8623–8631. [Google Scholar] [CrossRef] [PubMed]
- Prendeville, S.; van der Kwast, T.H. Lymph node staging in prostate cancer: Perspective for the pathologist. J. Clin. Pathol. 2016, 69, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.A.; Wang, X.; Wu, F.; Huang, R.; Xue, F.; Liang, G.; Tao, M.; Cai, P.; Huang, Y. Transcriptome profiling of the cancer, adjacent non-tumour and distant normal tissues from a colorectal cancer patient by deep sequencing. PLoS ONE 2012, 7, e41001. [Google Scholar]
- Zhu, S.; Qing, T.; Zheng, Y.; Jin, L.; Shi, L. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget 2017, 8, 53763. [Google Scholar] [CrossRef] [PubMed]
References | Samples/Method | Panel | Conclusion |
---|---|---|---|
Arango et al. (2005) [22] | 137 fresh-frozen tumour Stage III CRC/Microarray analysis | 22,283 probe sets | GEP predict recurrence in Dukes’ C |
Bertucci et al. (2004) [23] | 50 cancerous and noncancerous colon tissues/Microarray analysis | The panel of ~8000 genes (spotted human cDNA) | GEP can improve the prognostic markers |
Watanabe et al. (2011) [24] | 141 CRC patients Microarray analysis | 40 discriminating probes | 18 genes found to decrease in patients with lymph node metastasis (LNM) in comparison to those without metastases |
Watanabe et al. (2009a) [25] | 89 CRC Patients/Human U133 Plus 2.0 GeneChip® | 73 novel discriminating genes | GEP may be useful in predicting the presence of LNM |
Watanabe et al. (2009b) [26] | 36 stage III CRC patients/Human U133 Plus 2.0 GeneChip® | The genes that are predictive for the presence of lymph node metastasis | GEP is useful in predicting recurrence in stage III colorectal cancer |
Wang et al. (2004) [27] | 74 patients with Dukes’ B CRC/Microarray U133a GeneChip® | Containing a total of 22,000 probe sets | A 23-gene signature that predicts recurrence in Dukes’ B patients |
Salazar et al. (2010) [28] | 188 fresh-frozen tumour with stage I to IV CRC/Agilent 44 K oligonucleotide arrays | - | Coloprint can distinguish low- and high-risk patients 18 genes |
Meeh et al. (2009) [29] | 25 fresh-frozen CRC tumour/Digital long serial analysis of gene expression | Sequenced to a depth of 26,060 unique tags | Development of LN in CRC occurs in part through elevated epithelial FN1 expression |
Lenehan et al. (2012) [30] | 74 CRC patients (FFPE)/TaqMan Low-Density Arrays | 225 prespecified tumour genes | Onco-Defender-CRC capable of differentiating between patients at ‘‘high risk’’ from those at ‘‘low risk’’ |
Kwon et al. (2004) [31] | 12 fresh-frozen CRC tumour/Microarray analysis | 408 genes | GEP can predict LNM |
Marisa et al. (2013) [32] | 750 fresh-frozen CRC samples/Human U133 Plus 2.0 eneChip® | 6 subtypes (Each contains 1000 genes) | GEP makes it possible to classify CRC samples based on genetic signatures and identify the targets for therapeutic attempts |
Becht et al. (2016) [33] | 1388 CRC tumour samples/Microarrays analysis | - | GEP is applicable in immune and stromal classification of CRC tumours |
Inoue et al. (2015) [34] | One hundred FFPE tissue Samples/Microarrays analysis | - | GEP could explain the heterogeneity of unresectable advanced or recurrent CRC |
Vishnubalaji et al. (2015) [35] | 13 fresh-frozen consecutive sporadic CRCs matched with their adjacent normal mucosa/microarray chip and miRNA microarray chip | Genes involved in pathways of cell cycle, integrated cancer | The data revealed several hundred potential miRNA-mRNA regulatory networks in CRC and suggest targeting relevant networks as potential therapeutic strategy for CRC |
Yamada et al. (2018) [36] | 278 colorectal tissue samples/Real-time RT-PCR, cell culture, and RNA | Panel of lnc-RNAs | The data highlight the capability of RNA-seq to discover novel lncRNAs involved in human carcinogenesis, which may serve as alternative biomarkers and/or molecular treatment targets |
Nguyen et al. (2015) [37] | The 1358 unique patients of six different CRC data sets/Microarray analysis | Panel of CRC-113 gene signature | CRC-113 gene signature provides new possibilities for improving prognostic models and personalised therapeutic strategies |
Gao et al. (2015) [38] | 1005 patients with stage II CRC/Microarray analysis | Eight cancer hallmark–based gene signatures were identified to construct CSS (cancer-specific survival) (cancer-specific survival) sets for determining prognosis | The prediction accuracy for low-and high-risk disease significantly outperformed other gene signatures such as Oncotype DX and ColoPrint |
Li et al. (2017) [39] | 11 primary colorectal tumours/Single-cell RNA-Seq Method | Panel of 292 genes | Results demonstrate that unbiased single-cell RNA-Seq profiling of tumour and matched normal samples enables us to characterise aberrant cell states within a tumour |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peyravian, N.; Larki, P.; Gharib, E.; Nazemalhosseini-Mojarad, E.; Anaraki, F.; Young, C.; McClellan, J.; Ashrafian Bonab, M.; Asadzadeh-Aghdaei, H.; Zali, M.R. The Application of Gene Expression Profiling in Predictions of Occult Lymph Node Metastasis in Colorectal Cancer Patients. Biomedicines 2018, 6, 27. https://doi.org/10.3390/biomedicines6010027
Peyravian N, Larki P, Gharib E, Nazemalhosseini-Mojarad E, Anaraki F, Young C, McClellan J, Ashrafian Bonab M, Asadzadeh-Aghdaei H, Zali MR. The Application of Gene Expression Profiling in Predictions of Occult Lymph Node Metastasis in Colorectal Cancer Patients. Biomedicines. 2018; 6(1):27. https://doi.org/10.3390/biomedicines6010027
Chicago/Turabian StylePeyravian, Noshad, Pegah Larki, Ehsan Gharib, Ehsan Nazemalhosseini-Mojarad, Fakhrosadate Anaraki, Chris Young, James McClellan, Maziar Ashrafian Bonab, Hamid Asadzadeh-Aghdaei, and Mohammad Reza Zali. 2018. "The Application of Gene Expression Profiling in Predictions of Occult Lymph Node Metastasis in Colorectal Cancer Patients" Biomedicines 6, no. 1: 27. https://doi.org/10.3390/biomedicines6010027
APA StylePeyravian, N., Larki, P., Gharib, E., Nazemalhosseini-Mojarad, E., Anaraki, F., Young, C., McClellan, J., Ashrafian Bonab, M., Asadzadeh-Aghdaei, H., & Zali, M. R. (2018). The Application of Gene Expression Profiling in Predictions of Occult Lymph Node Metastasis in Colorectal Cancer Patients. Biomedicines, 6(1), 27. https://doi.org/10.3390/biomedicines6010027