GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients
"> Figure 1
<p>Differences in the number of lymph nodes invaded by tumour cells between the control and case groups.</p> "> Figure 2
<p>High-Resolution Melting (HRM) detection of rs3543 genotype: (<b>a</b>) genotype CC, (<b>b</b>) genotype CT, and (<b>c</b>) genotype TT. Curve colors represent different samples.</p> "> Figure 3
<p>HRM detection of rs705193 genotypes: (<b>a</b>) genotype CC and (<b>b</b>) genotype CG. Curve colors represent different samples.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Patients
2.2. High-Resolution Melting Analysis
2.3. Statistical Analysis
3. Results
3.1. Physiological Parameters
3.2. Tumour Parameters
3.3. Connexin 37 Genotypes
3.3.1. Melting Profiles
3.3.2. Genotypes and Allele Frequencies
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pfenniger, A.; Wohlwend, A.; Kwak, B.R. Mutations in connexin genes and disease. Eur. J. Clin. Investig. 2011, 41, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, R.; Willecke, K. Connexin-caused genetic diseases and corresponding mouse models. Antioxid. Redox Signal. 2009, 11, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.J.; Xu, X.; Lo, C.W. Connexins and cell signalling in development and disease. Annu. Rev. Cell Dev. Biol. 2004, 20, 811–838. [Google Scholar] [CrossRef] [PubMed]
- Laird, D. The gap junction proteome and its relationship to disease. Trends Cell Biol. 2010, 20, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Poage, E.; Singer, M.; Armer, J.; Poundall, M.; Shellabarger, M.J. Demystifying lymphedema: Development of the lymphedema putting evidence into practice card. Clin. J. Oncol. Nurs. 2008, 12, 951–964. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Dagenais, S.; Erickson, R.P.; Arlt, M.F.; Glynn, M.W.; Gorski, J.L.; Seaver, L.H.; Glover, T.W. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema distichiasis syndrome. Am. J. Hum. Genet. 2000, 67, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Hayes, S.; Janda, M.; Cornish, B.; Battistutta, D.; Newman, B. Lymphedema after breast cancer: Incidence, risk factors, and effect on upper body function. J. Clin. Oncol. 2008, 26, 3536–3542. [Google Scholar] [CrossRef] [PubMed]
- Soran, A.; D’Angelo, G.; Begovic, M.; Ardic, F.; Harlak, A.; Samuel Wieand, H.; Vogel, V.G.; Johnson, R.R. Breast cancer related lymphedema—What are the significant predictors and how they affect the severity of lymphedema? Breast J. 2006, 12, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Finegold, D.N.; Schacht, V.; Kimak, M.A.; Lawrence, E.C.; Foeldi, E.; Karlsson, J.M.; Baty, C.J.; Ferrell, R.E. HGF and MET mutations in primary and secondary lymphedema. Lymphat. Res. Biol. 2008, 6, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Finegold, D.N.; Baty, C.J.; Knickelbein, K.Z.; Perschke, S.; Noon, S.E.; Campbell, D.; Karlsson, J.M.; Huang, D.; Kimak, M.A.; Lawrence, E.C.; et al. Connexin 47 mutations increase risk for secondary lymphedema following breast cancer treatment. Clin. Cancer Res. 2012, 18, 2382–2390. [Google Scholar] [CrossRef] [PubMed]
- Henneke, M.; Combes, P.; Diekmann, S.; Bertini, E.; Brockmann, K.; Burlina, A.P.; Kaiser, J.; Ohlenbusch, A.; Plecko, B.; Rodriguez, D.; et al. GJA12 mutations are a rare cause of Pelizaeus-Merzbacher-like disease. Neurology 2008, 70, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Orthmann-Murphy, J.; Salsano, E.; Abrams, C.; Bizzi, A.; Uziel, G.; Freidin, M.M.; Lamantea, E.; Zeviani, M.; Scherer, S.S.; Pareyson, D.; et al. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 2009, 132, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.Y.; Xie, L.J.; Linask, K.L.; Zhang, C.; Zhao, X.Q.; Yang, Y.; Zhou, G.M.; Wu, Y.J.; Marquez-Rosado, L.; McElhinney, D.B.; et al. Evaluating the role of connexin43 in congenital heart disease: Screening for mutations in patients with outflow tract anomalies and the analysis of knock-in mouse models. J. Cardiovasc. Dis. Res. 2011, 2, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Saez, J.; Berthoud, V.; Branes, M.; Martinez, A.D.; Beyer, E.C. Plasma membrane channels formed by connexins: Their regulation and functions. Physiol. Rev. 2003, 83, 1359–1400. [Google Scholar] [CrossRef] [PubMed]
- Pfenniger, A.; Derouette, J.; Verma, V.; Lin, X.; Foglia, B.; Coombs, W.; Roth, I.; Satta, N.; Dunoyer-Geindre, S.; Sorgen, P.; et al. Gap junction protein Cx37 interacts with endothelial nitric oxide synthase in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Izawa, H.; Ichihara, S.; Takatsu, F.; Ishihara, H.; Hirayama, H.; Sone, T.; Tanaka, M.; Yokota, M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N. Engl. J. Med. 2002, 347, 1916–1923. [Google Scholar] [CrossRef] [PubMed]
- International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2013 Consensus Document of the International Society of Lymphology. Lymphology 2013, 46, 1–11. [Google Scholar]
- GeNet Bio. PrimePrep Genomic DNA Isolation Kit Manual from Blood and Tissue. Available online: www.genetbio.com/en/page9.html (accessed on 3 August 2014).
- Reed, G.H.; Kent, J.O.; Wittwer, C.T. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 2007, 8, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, R.; Baty, C.J.; Kimak, M.; Karlsson, J.M.; Lawrence, E.C.; Franke-Snyder, M.; Meriney, S.D.; Feingold, E.; Finegold, D.N. GJC2 missense mutations cause human lymphedema. Am. J. Hum. Genet. 2010, 86, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Ostergaard, P.; Simpson, M.; Brice, G.; Mansour, S.; Connell, F.C.; Onoufriadis, A.; Child, A.H.; Hwang, J.; Kalidas, K.; Mortimer, P.S.; et al. Rapid identification of mutations in GJC2 in primary lymphoedema using whole exome sequencing combined with linkage analysis with delineation of the phenotype. J. Med. Genet. 2011, 48, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Calderón, J.F.; Retamal, M.A. Regulation of Connexins Expression Levels by MicroRNAs, an Update. Front. Physiol. 2016, 7, 558. [Google Scholar] [CrossRef] [PubMed]
- Miaskowski, C.; Dodd, M.; Paul, S.M.; West, C.; Hamolsky, D.; Abrams, G.; Cooper, B.A.; Elboim, C.; Neuhaus, J.; Schmidt, B.L.; et al. Lymphatic and Angiogenic Candidate Genes Predict the Development of Secondary Lymphedema following Breast Cancer Surgery. PLoS ONE 2013, 8, e60164. [Google Scholar] [CrossRef] [PubMed]
- Sanghani, M.; Balk, E.M.; Cady, B. Impact of axillary lymph node dissection on breast cancer outcome in clinically node negative patients: A systematic review and meta-analysis. Cancer 2009, 115, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
SNP | Allele | Amplicon Size | Primer |
---|---|---|---|
rs3543 | C→T | 182 bp | Forward: 5′ CTGGAGAGGAAGCCGTAGTG 3′ |
Reverse: 5′ CAACAGAGGGGTCCTGAGAA 3′ | |||
rs705193 | C→G | 194 bp | Forward: 5′ CTGATCCAGAGGAACCCAGA 3′ |
Reverse: 5′ TGATGAAAACAAGGCACCAG 3′ |
Measurements | Statistics | Significance |
---|---|---|
Age (year) | t = 0.998 | p = 0.321, p > 0.05 |
Height (cm) | U = 1342.5 | p = 0.775, p > 0.05 |
Weight (kg) | U = 1150.5 | p = 0.314, p > 0.05 |
Body surface area (m2) | U = 1249.0 | p = 0.720, p > 0.05 |
Tumour size (cm) | ||
Control | Median: 5; Lower: 4; Upper 5 * | p = 0.277 |
Case | Median: 5; Lower: 5; Upper 5 ** | p = 0.618 |
No. of lymph nodes removed | ||
Control | Median: 10; Lower: 8; Upper 12 * | p = 0.132 |
Case | Median: 10; Lower: 9; Upper 10 ** | p = 0.997 |
No. of lymph nodes involved | ||
Control | Median: 1; Lower: 0; Upper 2 * | p = 0.132 |
Case | Median: 2; Lower: 2; Upper 4 ** | p = 0.002 |
Physiological Parameters | Age (Year) | Height (cm) | Weight (kg) | Body Surface Area | Constant |
---|---|---|---|---|---|
β | −0.027 | 0.028 | −0.030 | −0.618 | −0.247 |
S.E. * | 0.026 | 0.039 | 0.023 | 10.118 | 50.856 |
Wald ** | 10.034 | 0.533 | 10.593 | 0.306 | 0.002 |
Sig. | 0.309 | 0.465 | 0.207 | 0.580 | 0.966 |
Odds ratio Exp (β) | 0.974 | 10.029 | 0.971 | 0.539 | 0.781 |
95% CI *** for odds ratio | |||||
Lower | 0.924 | 0.953 | 0.927 | 0.060 | |
Upper | 1.025 | 1.110 | 1.017 | 4.820 |
Clinical Parameters and Genotypes | b | S.E. | Wald | p | Odds Ratio | 95% CI for Odds Ratio | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Surgery Method (MRM) | 1.017 | 0.572 | 3.162 | 0.075 | 2.766 | 0.901 | 8.488 |
Tumour size (cm) | 0.050 | 0.130 | 0.149 | 0.699 | 1.052 | 0.815 | 1.357 |
No. of lymph nodes removed | −0.089 | 0.076 | 1.385 | 0.239 | 0.914 | 0.788 | 1.061 |
No. of lymph nodes involved | 0.150 | 0.099 | 2.277 | 0.131 | 1.162 | 0.956 | 1.411 |
rs3543 (CC) | −1.570 | 1.037 | 2.296 | 0.130 | 0.208 | 0.027 | 1.586 |
rs3543 (CT) | −0.351 | 0.637 | 0.304 | 0.582 | 0.704 | 0.202 | 2.454 |
rs705193 (CC) | −1.025 | 0.931 | 1.212 | 0.271 | 0.359 | 0.058 | 2.226 |
Constant | 0.275 | 1.316 | 0.044 | 0.835 | 1.316 |
Presence of Secondary Lymphedema | rs3543 | Total | |||
---|---|---|---|---|---|
CC | CT | TT | |||
With secondary lymphedema (Case group) | Count | 5 | 31 | 15 | 51 |
% within Presence of lymphedema | 9.8% | 60.8% | 29.4% | 100.0% | |
% within rs3543 | 18.5% | 58.5% | 68.2% | 50.0% | |
Std. Residual (z) | −2.3 | 0.9 | 1.2 | ||
Without secondary lymphedema (Control group) | Count | 22 | 22 | 7 | 51 |
% within Presence of lymphedema | 43.1% | 43.1% | 13.7% | 100.0% | |
% within rs3543 | 81.5% | 41.5% | 31.8% | 50.0% | |
Std. Residual (z) | 2.3 | −0.9 | −1.2 | ||
Total | Count | 27 | 53 | 22 | 102 |
% within Presence of lymphedema | 26.5% | 52.0% | 21.6% | 100.0% | |
% within rs3543 | 100.0% | 100.0% | 100.0% | 100.0% |
Presence of Lymphedema | rs705193 | Total | ||
---|---|---|---|---|
CC | CG | |||
With secondary lymphedema (Case group) | Count | 8 | 43 | 51 |
% within Presence of lymphedema | 15.7% | 84.3% | 100.0% | |
% within rs705193 | 24.2% | 62.3% | 50.0% | |
Std. Residual (z) | −2.1 | 1.4 | ||
Without secondary lymphedema (Control group) | Count | 25 | 26 | 51 |
% within Presence of lymphedema | 49.0% | 51.0% | 100.0% | |
% within rs705193 | 75.8% | 37.7% | 50.0% | |
Std. Residual (z) | 2.1 | −1.4 | ||
Total | Count | 33 | 69 | 102 |
% within Presence of lymphedema | 32.4% | 67.6% | 100.0% | |
% within rs705193 | 100.0% | 100.0% | 100.0% |
Presence of Lymphedema | rs3543 | Total | |||
---|---|---|---|---|---|
CC | CT | TT | |||
With secondary lymphedema (Case group) | rs705193 CC Count | 5 | 0 | 3 | 8 |
Std. Residual (z) | 4.8 | −2.2 | 0.4 | ||
CG Count | 0 | 31 | 12 | 43 | |
Std. Residual (z) | −2.1 | 1.0 | −0.2 | ||
Total Count | 5 | 31 | 15 | 51 | |
Without secondary lymphedema (Control group) | rs705193 CC Count | 21 | 2 | 2 | 25 |
Std. Residual (z) | 3.1 | −2.7 | −0.8 | ||
CG Count | 1 | 20 | 5 | 26 | |
Std. Residual (z) | −3.1 | 2.6 | 0.8 | ||
Total Count | 22 | 22 | 7 | 51 | |
Total | rs705193 CC Count | 26 | 2 | 5 | 33 |
Std. Residual (z) | 5.8 | −3.7 | −0.8 | ||
CG Count | 1 | 51 | 17 | 69 | |
Std. Residual (z) | −4.0 | 2.5 | 0.5 | ||
Total Count | 27 | 53 | 22 | 102 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadizadeh, M.; Mohaddes Ardebili, S.M.; Salehi, M.; Young, C.; Mokarian, F.; McClellan, J.; Xu, Q.; Kazemi, M.; Moazam, E.; Mahaki, B.; et al. GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients. Biomedicines 2018, 6, 23. https://doi.org/10.3390/biomedicines6010023
Hadizadeh M, Mohaddes Ardebili SM, Salehi M, Young C, Mokarian F, McClellan J, Xu Q, Kazemi M, Moazam E, Mahaki B, et al. GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients. Biomedicines. 2018; 6(1):23. https://doi.org/10.3390/biomedicines6010023
Chicago/Turabian StyleHadizadeh, Mahrooyeh, Seiied Mojtaba Mohaddes Ardebili, Mansoor Salehi, Chris Young, Fariborz Mokarian, James McClellan, Qin Xu, Mohammad Kazemi, Elham Moazam, Behzad Mahaki, and et al. 2018. "GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients" Biomedicines 6, no. 1: 23. https://doi.org/10.3390/biomedicines6010023
APA StyleHadizadeh, M., Mohaddes Ardebili, S. M., Salehi, M., Young, C., Mokarian, F., McClellan, J., Xu, Q., Kazemi, M., Moazam, E., Mahaki, B., & Bonab, M. A. (2018). GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients. Biomedicines, 6(1), 23. https://doi.org/10.3390/biomedicines6010023