Lymph Node Adiposity and Metabolic Dysfunction-Associated Steatotic Liver Disease
<p>Variable lymph node size and morphology on mammographic medio-lateral oblique (MLO) views of the axilla. (<b>A</b>) Normal axillary lymph nodes measuring 8–11 mm (dotted line) with small physiologic “fatty notch” of lucent hilar fat (circle). (<b>B</b>) Fat-enlarged axillary lymph nodes measuring 25–29 mm (dotted line) due to increased lucent hilar fat (circle).</p> "> Figure 2
<p>Data collection.</p> "> Figure 3
<p>Lymph node (LN) measurements obtained: a—LN length, b—Hilar length, c—LN width, d—hilar width.</p> "> Figure 4
<p>Performance of lymph node adiposity for predicting steatosis. (<b>A</b>) LN measurements alone yielded AUC of 61.9% to 68.7%. (<b>B</b>) LN measurements combined with clinical variables yielded AUC of 80.4% to 83.5%.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics and Image Analysis
3.2. Correlation Between Lymph Node Metrics and MASLD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Cotter, T.G.; Rinella, M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology 2020, 158, 1851–1864. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Cusi, K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. 2022, 10, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Bertot, L.C.; Jeffrey, G.P.; Wallace, M.; MacQuillan, G.; Garas, G.; Ching, H.L.; Adams, L.A. Nonalcoholic fatty liver disease-related cirrhosis is commonly unrecognized and associated with hepatocellular carcinoma. Hepatol. Commun. 2017, 1, 53–60. [Google Scholar] [CrossRef]
- Canbay, A.; Kachru, N.; Haas, J.S.; Sowa, J.; Meise, D.; Ozbay, A.B. Patterns and predictors of mortality and disease progression among patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2020, 52, 1185–1194. [Google Scholar] [CrossRef]
- Budd, J.; Cusi, K. Nonalcoholic fatty liver disease: What does the primary care physician need to know? Am. J. Med. 2020, 133, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.E. A new treatment and updated clinical practice guidelines for MASLD. Nat. Rev. Gastroenterol. Hepatol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lindenmeyer, C.C.; McCullough, A.J. The Natural History of Nonalcoholic Fatty Liver Disease—An Evolving View. Clin. Liver Dis. 2018, 22, 11–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrara, D.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J. Cell. Physiol. 2019, 234, 21630–21641. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Ross, R.; Després, J.-P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-S.; Ma, X.-F.; Zhao, J.; Du, S.-X.; Zhang, J.; Dong, M.-Z.; Xin, Y.-N. Association between nonalcoholic fatty liver disease and extrahepatic cancers: A systematic review and meta-analysis. Lipids Health Dis. 2020, 19, 118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alexander, R.M.M.D.; Haider, S.J.; MacKenzie, T.; Goodrich, M.E.; Weiss, J.; Onega, T. Correlation between obesity and fat-infiltrated axillary lymph nodes visualized on mammography. Br. J. Radiol. 2018, 91, 20170110. [Google Scholar]
- Elham, K.; Azadeh, A.; Khalili, P.E.; Radin, M.; Mohammadreza, C.; Pouria, R. Effects of Obesity on Axillary Lymph Node Structure: Association of Hilar Fat Deposition and Alterations in Cortex Width. Maedica (Bucur) 2020, 15, 99–104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, Q.; Diflorio-Alexander, R.M.; Patel, S.D.; Sieberg, R.T.; Margron, M.J.; Ansari, S.M.; Karagas, M.R.; Mackenzie, T.A.; Hassanpour, S. Association between fat-infiltrated axillary lymph nodes on screening mammography and cardiometabolic disease. Obes. Sci. Pract. 2022, 8, 757–766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rubino, J.; Austin-Strohbehn, J.A.; Wang, Q.; Ali, T.; Tosteson, T.D.; Stumez, K.; diFlorio-Alexander, R.M. Fat-Enlarged Axillary Lymph Nodes on Screening Mammograms Predict Cardiometabolic Disease and Cardiovascular Disease Risk. Available online: https://apps.arrs.org/AbstractsAM24Open/Main/AwardWinningOnlinePosters (accessed on 23 December 2024).
- Dwan, D.; Ramin, S.K.; Chen, Y.; Muller, K.E.; diFlorio-Alexander, R.M. Decrease in the Size of Fat-Enlarged Axillary Lymph Nodes and Serum Lipids after Bariatric Surgery. Cells 2022, 11, 482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- diFlorio-Alexander, R.M.; Song, Q.; Dwan, D.; Austin-Strohbehn, J.A.; Muller, K.E.; Kinlaw, W.B.; MacKenzie, T.A.; Karagas, M.R.; Hassanpour, S. Fat-enlarged axillary lymph nodes are associated with node-positive breast cancer in obese patients. Breast Cancer Res. Treat. 2021, 189, 257–267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iribarren, C.; Sanchez, G.; Husson, G.; Levine-Hall, T.; Quesenberry, C.; Sam, D.L.; Maier, J.; Chaudhary, R.S.; Patel, M.; Sadeghi, B.; et al. MultIethNic Study of BrEast ARterial Calcium Gradation and CardioVAscular Disease: Cohort recruitment and baseline characteristics. Ann. Epidemiol. 2018, 28, 41–47.e12. [Google Scholar] [CrossRef] [PubMed]
- Funaro, K.; Niell, B. Screening Mammography Utilization in the United States. J. Breast Imaging 2023, 5, I384–I392. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Bae, S.-J.; Lee, M.J.; Kim, E.H.; Park, H.; Kim, H.S.; Cho, Y.K.; Jung, C.H.; Lee, W.J.; Choe, J. Association of Visceral Fat Obesity, Sarcopenia, and Myosteatosis with Non-Alcoholic Fatty Liver Disease without Obesity. Clin. Mol. Hepatol. 2023, 29, 987–1001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, Q.; Muller, K.E.; Hondelink, L.M.; Diflorio-Alexander, R.M.; Karagas, M.R.; Hassanpour, S. Nonmetastatic Axillary Lymph Nodes Have Distinct Morphology and Immunophenotype in Obese Patients with Breast Cancer at Risk for Metastasis. Am. J. Pathol. 2024, 194, 253–263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verboven, K.; Wouters, K.; Gaens, K.; Hansen, D.; Bijnen, M.; Wetzels, S.; Stehouwer, C.D.; Goossens, G.H.; Schalkwijk, C.G.; Blaak, E.E.; et al. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 2018, 8, 4677. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marques, L.R.; Diniz, T.A.; Antunes, B.M.; Rossi, F.E.; Caperuto, E.C.; Lira, F.S.; Gonçalves, D.C. Reverse Cholesterol Transport: Molecular Mechanisms and the Non-medical Approach to Enhance HDL Cholesterol. Front. Physiol. 2018, 9, 526. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Herck, M.A.; Weyler, J.; Kwanten, W.J.; Dirinck, E.L.; De Winter, B.Y.; Francque, S.M.; Vonghia, L. The Differential Roles of T Cells in Non-alcoholic Fatty Liver Disease and Obesity. Front. Immunol. 2019, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Petagine, L.; Zariwala, M.G.; Patel, V.B. Non-alcoholic fatty liver disease: Immunological mechanisms and current treatments. World J. Gastroenterol. 2023, 29, 4831–4850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huby, T.; Gautier, E.L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat. Rev. Immunol. 2022, 22, 429–443. [Google Scholar] [CrossRef]
- Paquissi, F.C. Immune Imbalances in Non-Alcoholic Fatty Liver Disease: From General Biomarkers and Neutrophils to Interleukin-17 Axis Activation and New Therapeutic Targets. Front. Immunol. 2016, 7, 490. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lv, J.; Han, M.; Yang, Z.; Li, T.; Jiang, S.; Yang, Y. STAT3: The Art of Multi-Tasking of Metabolic and Immune Functions in Obesity. Prog. Lipid Res. 2018, 70, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Sudduth, C.L.; Greene, A.K. Lymphedema and Obesity. Cold Spring Harb. Perspect. Med. 2022, 12, a041176. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.R.; Beck, M.A.; Alwarawrah, Y.; MacIver, N.J. Emerging mechanisms of obesity-associated immune dysfunction. Nat. Rev. Endocrinol. 2024, 20, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Ponce-de-Leon, M.; Hannemann, A.; Linseisen, J.; Nauck, M.; Lerch, M.M.; Bülow, R.; Völzke, H.; Friedrich, N.; Kassubek, J.; Müller, H.-P.; et al. Links between Ectopic and Abdominal Fat and Systemic Inflammation: New Insights from the SHIP-Trend Study. Dig. Liver Dis. 2022, 54, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. NAFLD as a Sexual Dimorphic Disease: Role of Gender and Reproductive Status in the Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv. Ther. 2017, 34, 1291–1326. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lessans, S.; Rohr, M.W.; Beardsley, J.; Altomare, D. Inflammation May Explain Gender Disparities in NAFLD and NASH. Am. J. Gastroenterol. 2020, 115, S588. [Google Scholar] [CrossRef]
Clinical Variable | Normal (LN Length < 16 mm) N = 60 | LNA (LN Length > 16 mm) N = 101 | p Value |
---|---|---|---|
Age (mean, SD) | 60.6 (10.1) | 59.8 (8.69) | 0.61 |
BMI (mean, SD) | 36.1 (8.72) | 37.5 (7.77) | 0.30 |
Steatosis | 38 (63.3%) | 89 (88.1%) | 0.0004 |
Steatohepatitis (NAS > 4) | 26 (43.3%) | 68 (67.3%) | 0.0048 |
HTN (N, %) | 27 (38.3%) | 56 (55.4%) | 0.008 |
T2DM (N, %) | 16 (26.7%) | 39 (38.6%) | 0.024 |
HLD (N, %) | 23 (38.3%) | 63 (62.4%) | 0.017 |
Univariable | Multivariable | |||
---|---|---|---|---|
LN Metric | Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value |
LN length | 2.493 (1.419, 4.749) | 0.0029 | 3.083(1.468, 7.351) | 0.0060 |
LN width | 7.656 (2.317, 30.661) | 0.0019 | 9.646 (2.107, 57.571) | 0.0069 |
Hilar length | 2.552 (1.412, 5.029) | 0.0037 | 2.688 (1.3, 6.250) | 0.0134 |
Hilar width | 3.246 (1.110, 10.570) | 0.0394 | 3.878 (1.064, 16.070) | 0.0486 |
Univariable | Multivariable | |||
---|---|---|---|---|
LN Metric | Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value |
LN length | 1.468 (0.998, 2.224) | 0.0591 | 1.308 (0.849, 2.077) | 0.2348 |
LN width | 2.068 (0.933, 4.825) | 0.081 | 1.551 (0.616, 4.083) | 0.3593 |
Hilar length | 1.548 (1.03, 2.411) | 0.0428 | 1.339 (0.853, 2.179) | 0.2177 |
Hilar width | 1.846 (0.801, 4.414) | 0.1569 | 1.746 (0.666, 4.741) | 0.2628 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubino, J.M.; Ring, N.Y.; Patel, K.; Xia, X.; MacKenzie, T.A.; diFlorio-Alexander, R.M. Lymph Node Adiposity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025, 13, 80. https://doi.org/10.3390/biomedicines13010080
Rubino JM, Ring NY, Patel K, Xia X, MacKenzie TA, diFlorio-Alexander RM. Lymph Node Adiposity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines. 2025; 13(1):80. https://doi.org/10.3390/biomedicines13010080
Chicago/Turabian StyleRubino, Jessica M., Natalie Yanzi Ring, Krishna Patel, Xiaoqing Xia, Todd A. MacKenzie, and Roberta M. diFlorio-Alexander. 2025. "Lymph Node Adiposity and Metabolic Dysfunction-Associated Steatotic Liver Disease" Biomedicines 13, no. 1: 80. https://doi.org/10.3390/biomedicines13010080
APA StyleRubino, J. M., Ring, N. Y., Patel, K., Xia, X., MacKenzie, T. A., & diFlorio-Alexander, R. M. (2025). Lymph Node Adiposity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines, 13(1), 80. https://doi.org/10.3390/biomedicines13010080