Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease
<p>Study design. Of the 150 patients treated with HIF-PHI or ESA, 105 were included in the analysis. HIF-PHI: hypoxia-inducible factor prolyl-hydroxylase inhibitor; ESA: erythropoietin-stimulating agent.</p> "> Figure 2
<p>Changes in erythropoiesis after HIF-PHI and ESA treatment. Red blood cell count (<b>A</b>), hemoglobin (<b>B</b>), hematocrit (<b>C</b>), red cell distribution width (<b>D</b>), mean corpuscular volume (<b>E</b>), mean corpuscular hemoglobin (<b>F</b>), mean corpuscular hemoglobin concentration (<b>G</b>), transferrin saturation (<b>H</b>), and ferritin (<b>I</b>) were measured before and 1 month, 3 months, and 6 months after the initiation of HIF-PHI or ESA treatment. The black line represents the results from patients treated with ESA. The red line represents the results from patients treated with HIF-PHI. The bars indicate the average ± SEM. The results of Dunnett’s test compared with baseline values: * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01. Welch’s <span class="html-italic">t</span>-test between the HIF-PHI and ESA groups: † <span class="html-italic">p</span> < 0.05; †† <span class="html-italic">p</span> < 0.01. HIF-PHI: hypoxia-inducible factor prolyl-hydroxylase inhibitor; ESA: erythropoietin-stimulating agent.</p> "> Figure 3
<p>Kaplan–Meier survival analysis of long-term outcomes. Kaplan–Meier survival analysis of patients treated with HIF-PHI or ESA during a median follow-up of 614 days. The outcome was defined as the initiation of dialysis or all-cause death. The overall survival rate was significantly higher in patients treated with HIF-PHI. HIF-PHI: hypoxia-inducible factor prolyl-hydroxylase inhibitor; ESA: erythropoietin-stimulating agent.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Laboratory Findings
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Changes in Erythropoiesis After HIF-PHI and ESA Treatment
3.3. Long-Term Prognosis After HIF-PHI and ESA Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagai, K.; Asahi, K.; Iseki, K.; Yamagata, K. Estimating the prevalence of definitive chronic kidney disease in the Japanese general population. Clin. Exp. Nephrol. 2021, 25, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Marreiros, C.; Viegas, C.; Simes, D. Targeting a silent disease: Vascular calcification in chronic kidney disease. Int. J. Mol. Sci. 2022, 23, 16114. [Google Scholar] [CrossRef]
- Kon, S.; Konta, T.; Ichikawa, K.; Asahi, K.; Yamagata, K.; Fujimoto, S.; Tsuruya, K.; Narita, I.; Kasahara, M.; Shibagaki, Y.; et al. Association between renal function and cardiovascular and all-cause mortality in the community-based elderly population: Results from the Specific Health Check and Guidance Program in Japan. Clin. Exp. Nephrol. 2018, 22, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Takata, T.; Hanada, H.; Taniguchi, S.; Hamada, S.; Mae, Y.; Iyama, T.; Isomoto, H. Zinc deficiency induces hypertension by paradoxically amplifying salt sensitivity under high salt intake in mice. Clin. Exp. Nephrol. 2024, 28, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Motoe, A.; Tanida, K.; Taniguchi, S.; Ida, A.; Yamada, K.; Hamada, S.; Ogawa, M.; Yamamoto, M.; Mae, Y.; et al. Feasibility of computed tomography-based assessment of skeletal muscle mass in hemodialysis patients. J. Nephrol. 2020, 34, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Mae, Y.; Takata, T.; Yamada, K.; Hamada, S.; Yamamoto, M.; Iyama, T.; Isomoto, H. Creatinine generation rate can detect sarcopenia in patients with hemodialysis. Clin. Exp. Nephrol. 2021, 26, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Taal, M.W.; Brenner, B.M. Renoprotective benefits of RAS inhibition: From ACEI to angiotensin II antagonists. Kidney Int. 2000, 57, 1803–1817. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Takata, T.; Sugihara, T.; Matono, T.; Koda, M.; Kanda, T.; Taniguchi, S.; Ida, A.; Mae, Y.; Yamamoto, M.; et al. Ipragliflozin ameliorates endoplasmic reticulum stress and apoptosis through preventing ectopic lipid deposition in renal tubules. Int. J. Mol. Sci. 2019, 21, 190. [Google Scholar] [CrossRef]
- Regidor, D.L.; Kopple, J.D.; Kovesdy, C.P.; Kilpatrick, R.D.; McAllister, C.J.; Aronovitz, J.; Greenland, S.; Kalantar-Zadeh, K. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J. Am. Soc. Nephrol. 2003, 14, 1181–1191. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Trivedi, B.K.; Kalantar-Zadeh, K.; Anderson, J.E. Association of anemia with outcomes in men with moderate and severe chronic kidney disease. Kidney Int. 2006, 69, 560–564. [Google Scholar] [CrossRef]
- Maruyama, Y.; Kanda, E.; Kikuchi, K.; Abe, M.; Masakane, I.; Yokoo, T.; Nitta, K. Association between anemia and mortality in hemodialysis patients is modified by the presence of diabetes. J. Nephrol. 2021, 34, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Uno, H.; Lewis, E.F.; Eckardt, K.U.; Lin, J.; Burdmann, E.A.; de Zeeuw, D.; Ivanovich, P.; Levey, A.S.; Parfrey, P.; et al. Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT) Investigators. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N. Engl. J. Med. 2010, 363, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Mae, Y.; Yamada, K.; Taniguchi, S.; Hamada, S.; Yamamoto, M.; Iyama, T.; Isomoto, H. Skeletal muscle mass is associated with erythropoietin response in hemodialysis patients. BMC Nephrol. 2021, 22, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Wish, J.B. Hypoxia-inducible factor prolyl hydroxylase inhibitors: A potential new treatment for anemia in patients with CKD. Am. J. Kidney Dis. 2017, 69, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Kuragano, T. The hepcidin-anemia axis: Pathogenesis of anemia in chronic kidney disease. Contrib. Nephrol. 2019, 198, 124–134. [Google Scholar] [CrossRef]
- Weir, M.R. Managing anemia across the stages of kidney disease in those hyporesponsive to erythropoiesis-stimulating agents. Am. J. Nephrol. 2021, 54, 450–466. [Google Scholar] [CrossRef]
- Aschemeyer, S.; Qiao, B.; Stefanova, D.; Valore, E.; Sek, A.C.; Ruwe, T.A.; Vieth, K.R.; Jung, G.; Casu, C.; Rivella, S.; et al. Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood 2018, 131, 899–910. [Google Scholar] [CrossRef]
- Ganz, T. Anemia of inflammation. N. Engl. J. Med. 2019, 131, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, K.; Fukagawa, M.; Akiba, T.; Nakayama, M.; Ito, K.; Hanaki, K.; Wolf, M.; Hirakata, H. Randomised clinical trial of ferric citrate hydrate on anemia management in hemodialysis patients with hyperphosphatemia: ASTRIO study. Sci. Rep. 2019, 9, 8877. [Google Scholar] [CrossRef] [PubMed]
- Tomosugi, N.; Koshino, Y. Tips for erythropoiesis-stimulating agent treatment of renal anemia. Clin. Exp. Nephrol. 2020, 24, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Förhécz, Z.; Gombos, T.; Borgulya, G.; Pozsonyi, Z.; Prohászka, Z.; Jánoskuti, L. Red cell distribution width in heart failure: Prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am. Heart J. 2020, 158, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Lee, M.; Lee, K.J.; Lee, Y.H.; Kim, D.; Shin, S.J.; Yoon, H.E. The combined clinical impact of red blood cell distribution width and vascular calcification on cardiovascular events and mortality in patients with end-stage kidney disease. Nephrology 2022, 41, 351–362. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nishi, S.; Tomo, T.; Masakane, I.; Saito, K.; Nangaku, M.; Hattori, M.; Suzuki, T.; Morita, S.; Ashida, A.; et al. 2015 Japanese Society for Dialysis Therapy: Guidelines for renal anemia in chronic kidney disease. Ther. Apher. Dial. 2017, 3, 36. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Kurumi, H.; Takata, T.; Kanda, T.; Sugihara, T.; Kakugawa, T.; Yokota, S.I.; Morisaki, T.; Akashi, T.; Isomoto, H. Investigating the role of heat shock protein 47 in fibrosis in Crohn’s disease. Sci. Rep. 2022, 12, 10966. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imae, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Nangaku, M.; Kondo, K.; Kokado, Y.; Ueta, K.; Kaneko, G.; Tandai, T.; Kawaguchi, Y.; Komatsu, Y. Phase 3 randomized study comparing vadadustat with darbepoetin alfa for anemia in Japanese patients with chronic kidney disease. J. Am. Soc. Nephrol. 2021, 32, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Akiszawa, T.; Nangaku, M.; Yonekawa, T.; Okuda, N.; Kawamatsu, S.; Onoue, T.; Endo, Y.; Hara, K.; Cobitz, A.R. Efficacy and Safety of Daprodustat Compared with Darbepoetin Alfa in Japanese Hemodialysis Patients with Anemia: A Randomized, Double-Blind, Phase 3 Trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 1155–1165. [Google Scholar] [CrossRef]
- Singh, A.K.; Carroll, K.; McMurray, J.J.V.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for the Treatment of Anemia in Patients Not Undergoing Dialysis. N. Engl. J. Med. 2021, 385, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, X. Stabilizing Hypoxia-Inducible Factor to Manage Anemia in Chronic Kidney Disease: From Basic Theory to Clinical Study. Kidney Dis. 2024, 10, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Srole, D.N.; Ganz, T. Erythroferrone structure, function, and physiology: Iron homeostasis and beyond. J. Cell. Physiol. 2021, 236, 4888–4901. [Google Scholar] [CrossRef]
- Hernik, A.; Szczepanek-Parulska, A.; Filipowicz, D.; Abdolall, A.; Borowczyk, M.; Wrotkowska, E.; Czarnywojtek, A.; Krasiński, Z.; Ruchała, M. The hepcidin concentration decreases in hypothyroid patients with Hashimoto’s thyroiditis following restoration of euthyroidism. Sci. Rep. 2019, 9, 16222. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Q.; Gao, L.; Liu, S.; Zhao, J.; Liu, G.; Zhang, S. Promising applications of red cell distribution width in diagnosis and prognosis of diseases with or without disordered iron metabolism. Cell Biol. Int. 2023, 47, 1161–1169. [Google Scholar] [CrossRef]
- Erken, E.; Ulgen, C.; Sarisik, F.N.; Erken, N.; Gungor, O.; Altunoren, O. Hematological parameters and clinical features in patients with advanced chronic kidney disease. Yonago Acta Med. 2020, 63, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Solak, Y.; Yilmaz, M.I.; Saglam, M.; Caglar, K.; Verim, S.; Unal, H.U.; Gok, M.; Demirkaya, E.; Gaipov, A.; Kayrak, M.; et al. Red cell distribution width is independently related to endothelial dysfunction in patients with chronic kidney disease. Am. J. Med. Sci. 2014, 347, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, H.; Ishibuchi, K.; Kaneko, M.; Niwa, H.; Yasuda, H.; Kumagai, H.; Furuya, R. Red blood cell distribution width is associated with all-cause and cardiovascular mortality in hemodialysis patients. Ther. Apher. Dial. 2017, 21, 565–571. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Tsai, S.M.; Chang, C.C.; Kor, C.T.; Lin, C.C. Association between red cell distribution width and mortality in patients undergoing continuous ambulatory peritoneal dialysis. Sci. Rep. 2017, 7, 45632. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Liu, P.; Wu, H.; Su, G. A nomogram to predict the in-hospital mortality of patients with congestive heart failure and chronic kidney disease. ESC Heart Fail. 2022, 28, 3167–3176. [Google Scholar] [CrossRef]
- Saito, H.; Tanaka, K.; Iwasaki, T.; Oda, A.; Watanabe, S.; Kobari, E.; Kimura, H.; Kazama, S.; Shimabukuro, M.; Asahi, K.; et al. Hematological parameters of anemia and prognosis of non-dialysis-dependent chronic kidney disease: The Fukushima CKD cohort study. Clin. Exp. Nephrol. 2023, 27, 55–65. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Zhong, J.; Qu, C.; Du, M.; Tian, H.; Xu, H.; Hao, F.; Huang, L. Red blood cell count and cystatin C as the specific biomarkers for diabetic retinopathy from diabetes mellitus: A case-control study. Sci. Rep. 2024, 14, 29288. [Google Scholar] [CrossRef]
- Xiong, Y.; Xie, S.; Yao, Y.; Chen, Y.; Ding, J.; Zhou, R.; Liu, W.; Zhang, Y.; Wang, L.; Liu, Y. Hemoglobin-to-red blood cell distribution width ratio is negatively associated with stroke: A cross-sectional study from NHANES. Sci. Rep. 2024, 14, 28098. [Google Scholar] [CrossRef]
- Ma, X.B.; Lv, Y.L.; Qian, L.; Huang, S.T.; Pu, X.X.; Liu, Y.M. Ratio of red blood cell distribution width to albumin level and risk of mortality in sarcopenic obesity. Sci. Rep. 2024, 14, 27886. [Google Scholar] [CrossRef]
- Liao, J.; Lu, D.; Zhang, L.; Wang, M. Prognostic value of red blood cell distribution width in sepsis induced cardiomyopathy patients. Sci. Rep. 2024, 14, 24483. [Google Scholar] [CrossRef]
- Ogawa, C.; Tsuchiya, K.; Tomosugi, N.; Maeda, K. A hypoxia-inducible factor stabilizer improves hematopoiesis and iron metabolism early after administration to treat anemia in hemodialysis patients. Int. J. Mol. Sci. 2020, 21, 7153. [Google Scholar] [CrossRef] [PubMed]
HIF-PHI | ESA | p Value | ||
---|---|---|---|---|
Number | 21 | 84 | ||
Age (year) | 76.0 ± 10.4 | 72.8 ± 12.0 | 0.22 | |
Sex | (male/female) | 10/11 | 49/35 | 0.22 |
Agents | ||||
Daprodustat/Vadadustat/Roxadustat | 10/6/5 | |||
CERA/Darbepoetin alfa | 59/25 | |||
Laboratory data at baseline | ||||
Red blood cell (×1012/L) | 3.06 ± 0.38 | 3.21 ± 0.51 | 0.13 | |
Hemoglobin (g/dL) | 9.5 ± 1.0 | 9.9 ± 1.5 | 0.14 | |
Hematocrit (L/L) | 0.298 ± 0.034 | 0.306 ± 0.047 | 0.40 | |
RDW (%) | 14.5 ± 1.9 | 14.0 ± 1.7 | 0.26 | |
Mean corpuscular volume (fL) | 99.7 ± 8.2 | 95.6 ± 5.8 | 0.029 | |
Mean cell hemoglobin (pg) | 31.7 ± 2.3 | 30.9 ± 1.9 | 0.16 | |
Mean corpuscular hemoglobin concentration (g/dL) | 31.8 ± 1.5 | 32.4 ± 1.2 | 0.13 | |
Transferrin saturation (%) | 29.6 ± 12.7 | 28.5 ± 13.5 | 0.73 | |
Ferritin (ng/dL) | 179.3 ± 120.4 | 223.1 ± 194.5 | 0.24 | |
C reactive protein (mg/dL) | 0.31 ± 0.51 | 0.89 ± 1.96 | 0.071 | |
eGFR (mL/min/1.73 m2) | 24.0 ± 9.6 | 19.9 ± 9.4 | 0.09 | |
CKD stager (n, %) | 0.15 | |||
3 | 5 (23.8) | 12 (14.3) | ||
4 | 13 (61.9) | 42 (50.0) | ||
5 | 3 (14.3) | 30 (35.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, Y.; Takata, T.; Taniguchi, S.; Kageyama, K.; Fujino, Y.; Hanada, H.; Mae, Y.; Iyama, T.; Hikita, K.; Isomoto, H. Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease. Biomedicines 2024, 12, 2926. https://doi.org/10.3390/biomedicines12122926
Yoshida Y, Takata T, Taniguchi S, Kageyama K, Fujino Y, Hanada H, Mae Y, Iyama T, Hikita K, Isomoto H. Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease. Biomedicines. 2024; 12(12):2926. https://doi.org/10.3390/biomedicines12122926
Chicago/Turabian StyleYoshida, Yukina, Tomoaki Takata, Sosuke Taniguchi, Kana Kageyama, Yudai Fujino, Hinako Hanada, Yukari Mae, Takuji Iyama, Katsuya Hikita, and Hajime Isomoto. 2024. "Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease" Biomedicines 12, no. 12: 2926. https://doi.org/10.3390/biomedicines12122926
APA StyleYoshida, Y., Takata, T., Taniguchi, S., Kageyama, K., Fujino, Y., Hanada, H., Mae, Y., Iyama, T., Hikita, K., & Isomoto, H. (2024). Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease. Biomedicines, 12(12), 2926. https://doi.org/10.3390/biomedicines12122926