Fuzzy vs. Traditional Reliability Model for Inverse Weibull Distribution
<p>In this figure we graphed the <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mi>P</mi> <mo>(</mo> <mi>Y</mi> <mo><</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics></math> with different values of parameters.</p> "> Figure 2
<p>Fuzzy reliability of stress–strength <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>F</mi> </msub> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mi>Y</mi> <mo>≺</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with different values of parameters.</p> "> Figure 3
<p>Heat maps of MSE results in <a href="#axioms-12-00582-t001" class="html-table">Table 1</a>.</p> "> Figure 4
<p>Heat maps of MSE results in <a href="#axioms-12-00582-t002" class="html-table">Table 2</a>.</p> "> Figure 5
<p>Heat maps of MSE results in <a href="#axioms-12-00582-t003" class="html-table">Table 3</a>.</p> "> Figure 6
<p>Estimated CDF, PDF, and p-p-plot for strength variable for the second data.</p> "> Figure 7
<p>Estimated CDF, PDF, and pp-plot for stress variable for the second data.</p> "> Figure 8
<p>In this figure we plotted the Profile likelihood of parameters.</p> "> Figure 9
<p>Iterations and Convergence of MCMC results for first data of the stress–strength model.</p> ">
Abstract
:1. Introduction
2. The Model of Stress and Strength
3. Axiomatic Classical Inference
3.1. Maximum Likelihood Estimation
3.2. Maximum Product of Spacing Estimation
4. Bayesian Estimator
5. Generating Data for Simulations
- The sample size of strength, n, and the sample size of stress, m are determined. The sample sizes of n = 15, 30, 70, and 120, and m = 10, 20, 80, and 130 are considered;
- The number of replications of simulation is determined, L = 10,000;
- A uniform distribution over the interval (0,1) is used to generate random samples of size n using the inverse of the IW distribution function in Equation (1), we transform them into samples of strength with an IW distribution with the parameters and .A uniform distribution with (0, 1) is used to generate random samples of size m using the inverse of the IW distribution function in Equation (1). We transform them into stress samples with an IW distribution with the parameters and .
- Estimate the parameters of stress–strength of IW model for each estimation method;
- Estimate traditional reliability stress–strength for each estimation method;
- Determine the parameter of membership function to give fuzzy reliability stress–strength for each estimation method as: is and is ;
- Calculate different measures of performance as bias and MSE for each method.
- It is observed that MSE (MLE) > MSE (MPS), bias (MLE) > bias (MPS), and length of confidence interval (L.CI) of (MLE) > L.CI (MPS) in most parameters, i.e., MPS performs better than MLE in the sense of bias, MSE, and L.CI;
- It is observed that when the k value increases, the fuzzy reliability stress–strength values tend to the conventional reliability stress–strength values, which means that the uncertainty disappears;
- When the sample sizes are increased, as expected, for each parameter, the bias and MSE values decrease;
- When , the fewest bias values for all calculations as well as the smallest MSE values for fuzzy and traditional reliability are found;
- It is observed that the largest MSE values for the parameters are obtained when increases;
- It is observed that the smallest MSE values for the parameters are obtained when increases;
- In comparison to MLE and MPS based on minimum bias and MSE, Bayesian estimators perform better;
- When , reliability stress–strength value increases.
6. Application of Real Data
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, H.Z. Reliability analysis method in the presence of fuzziness attached to operating time. Microelectron. Reliab. 1995, 35, 1483–1487. [Google Scholar] [CrossRef]
- Deep, K.; Jain, M.; Salhi, S. (Eds.) Performance Prediction and Analytics of Fuzzy, Reliability and Queuing Models: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Liu, L.; Li, X.Y.; Zhang, W.; Jiang, T.M. Fuzzy reliability prediction of rotating machinery product with accelerated testing data. J. Vibroengineering 2015, 17, 4193–4210. [Google Scholar]
- Wu, H.C. fuzzy reliability estimation using the Bayesian approach. Comput. Ind. Eng. 2004, 46, 467–493. [Google Scholar] [CrossRef]
- Wu, H.C. Fuzzy Bayesian system reliability assessment based on exponential distribution. Appl. Math. Model. 2006, 30, 509–530. [Google Scholar] [CrossRef]
- Meriem, B.; Gemeay, A.M.; Almetwally, E.M.; Halim, Z.; Alshawarbeh, E.; Abdulrahman, A.T.; El-Raouf, M.A.; Hussam, E. The power xlindley distribution: Statistical inference, fuzzy reliability, and covid-19 application. J. Functi. Sp. 2022, 2022, 9094078. [Google Scholar] [CrossRef]
- Huang, H.Z.; Zuo, M.J.; Sun, Z.Q. Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets Syst. 2006, 157, 1674–1686. [Google Scholar] [CrossRef]
- Keller, A.Z.; Arr, K. Alternate reliability models for mechanical systems. In Proceedings of the 3rd International Conference on Reliability and Maintainability, Toulose, France, 1982. [Google Scholar]
- Keller, A.Z.; Giblin, M.T.; Farnworth, N.R. Reliability analysis of commercial vehicle engines. Reliab. Eng. 1985, 10, 15–25. [Google Scholar] [CrossRef]
- Kundu, D.; Howlader, H. Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data. Comput. Stat. Data Anal. 2010, 54, 1547–1558. [Google Scholar] [CrossRef]
- Panaitescu, E.; Popescu, P.G.; Cozma, P.; Popa, M. Bayesian and non-Bayesian estimators using record statistics of the modified-inverse Weibull distribution. Proc. Rom. Acad. Ser. A 2010, 11, 224–231. [Google Scholar]
- De Gusmao, F.R.; Ortega, E.M.; Cordeiro, G.M. The generalized inverse Weibull distribution. Stat. Pap. 2011, 52, 591–619. [Google Scholar] [CrossRef]
- Yahgmaei, F.; Babanezhad, M.; Moghadam, O.S. Bayesian estimation of the scale parameter of inverse Weibull distribution under the asymmetric loss functions. J. Probab. Stat. 2013, 2013, 890914. [Google Scholar] [CrossRef] [Green Version]
- Ateya, S.F. Estimation under inverse Weibull distribution based on Balakrishnan’s unified hybrid censored scheme. Commun. Stat. Simul. Comput. 2017, 46, 3645–3666. [Google Scholar] [CrossRef]
- Jana, N.; Bera, S. Interval estimation of multicomponent stress-strength reliability based on inverse Weibull distribution. Math. Comput. Simul. 2022, 191, 95–119. [Google Scholar] [CrossRef]
- Shawky, A.I.; Khan, K. Reliability Estimation in Multicomponent Stress-Strength Based on Inverse Weibull Distribution. Processes 2022, 10, 226. [Google Scholar] [CrossRef]
- Okasha, H.; Nassar, M. Product of spacing estimation of entropy for inverse Weibull distribution under progressive type-II censored data with applications. J. Taibah Univ. Sci. 2022, 16, 259–269. [Google Scholar] [CrossRef]
- Tashkandy, Y.A.; Almetwally, E.M.; Ragab, R.; Gemeay, A.M.; Abd El-Raouf, M.M.; Khosa, S.K.; Hussam, E.; Bakr, M.E. Statistical inferences for the extended inverse Weibull distribution under progressive type-II censored sample with applications. Alex. Eng. J. 2022, 65, 493–502. [Google Scholar] [CrossRef]
- Basheer, A.M.; Almetwally, E.M.; Okasha, H.M. Marshall-Olkin alpha power inverse Weibull distribution: Non-Bayesian and Bayesian estimations. J. Stat. Appl. Probab. 2021, 10, 327–345. [Google Scholar]
- Muhammed, H.Z.; Almetwally, E.M. Bayesian and non-Bayesian estimation for the bivariate inverse Weibull distribution under progressive type-II censoring. Ann. Data Sci. 2020, 10, 1–32. [Google Scholar] [CrossRef]
- El-Morshedy, M.; Eliwa, M.S.; El-Gohary, A.; Almetwally, E.M.; EL-Desokey, R. Exponentiated generalized inverse flexible Weibull distribution: Bayesian and non-Bayesian estimation under complete and type II censored samples with applications. Commun. Math. Stat. 2022, 10, 413–434. [Google Scholar] [CrossRef]
- Sabry, M.A.; Almetwally, E.M.; Alamri, O.A.; Yusuf, M.; Almongy, H.M.; Eldeeb, A.S. Inference of fuzzy reliability model for inverse Rayleigh distribution. AIMS Math. 2021, 6, 9770–9785. [Google Scholar] [CrossRef]
- Zardasht, V.; Zeephongsekul, P.; Asadi, M. On nonparametric estimation of a reliability function. Commun. Stat. Theory Methods 2012, 41, 983–999. [Google Scholar] [CrossRef]
- Neamah, M.W.; Ali, B.K. Fuzzy reliability estimation for Frechet distribution by using simulation. Period. Eng. Nat. Sci. (PEN) 2020, 8, 632–646. [Google Scholar]
- Johnson, R.A. 3 Stress-strength models for reliability. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 1988; Volume 7, pp. 27–54. [Google Scholar]
- Cheng, R.C.H.; Amin, N.A.K. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. Ser. B (Methodol.) 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Coolen, F.P.A.; Newby, M.J. A Note on the Use of the Product of Spacings in Bayesian Inference; Department of Mathematics and Computing Science, University of Technology: Eindhoven, The Netherlands, 1990; Volume 9035. [Google Scholar]
- Almongy, H.M.; Almetwally, E.M.; Alharbi, R.; Alnagar, D.; Hafez, E.H.; Mohie El-Din, M.M. The Weibull generalized exponential distribution with censored sample: Estimation and application on real data. Complexity 2021, 2021, 6653534. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Jawa, T.M.; Sayed-Ahmed, N.; Park, C.; Zakarya, M.; Dey, S. Analysis of unit-Weibull based on progressive type-II censored with optimal scheme. Alex. Eng. J. 2023, 63, 321–338. [Google Scholar] [CrossRef]
- Riad, F.H.; Hussam, E.; Gemeay, A.M.; Aldallal, R.A.; Afify, A.Z. Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data. Math. Biosci. Eng. 2022, 19, 6551–6581. [Google Scholar] [CrossRef]
- Ahmad, A.; Alsadat, N.; Atchade, M.N.; ul Ain, S.Q.; Gemeay, A.M.; Meraou, M.A.; Almetwally, E.M.; Hossain, M.M.; Hussam, E. New hyperbolic sine-generator with an example of Rayleigh distribution: Simulation and data analysis in industry. Alex. Eng. J. 2023, 73, 415–426. [Google Scholar] [CrossRef]
- Beghriche, A.; Tashkandy, Y.A.; Bakr, M.E.; Halim, Z.; Gemeay, A.M.; Hossain, M.M.; Muse, A.H. The Inverse XLindley Distribution: Properties and Application. IEEE Access 2023, 11, 47272–47281. [Google Scholar] [CrossRef]
- El-Sherpieny, E.S.A.; Almetwally, E.M.; Muhammed, H.Z. Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution. Phys. A Stat. Mech. Appl. 2020, 553, 124251. [Google Scholar] [CrossRef]
- Islam, A.F.M.; Roy, M.K.; Ali, M.M. A non-linear exponential (NLINEX) loss function in Bayesian analysis. J. Korean Data Inf. Sci. Soc. 2004, 15, 899–910. [Google Scholar]
- Dey, S.; Ali, S.; Park, C. Weighted exponential distribution: Properties and different methods of estimation. J. Stat. Comput. Simul. 2015, 85, 3641–3661. [Google Scholar] [CrossRef]
- Dey, S.; Singh, S.; Tripathi, Y.M.; Asgharzadeh, A. Estimation and prediction for a progressively censored generalized inverted exponential distribution. Stat. Methodol. 2016, 32, 185–202. [Google Scholar] [CrossRef]
- Salem, S.; Abo-Kasem, O.E.; Hussien, A. On Joint Type-II Generalized Progressive Hybrid Censoring Scheme. Comput. J. Math. Stat. Sci. 2023, 2, 123–158. [Google Scholar] [CrossRef]
- Saraçoğlu, B.; Kinaci, I.; Kundu, D. On estimation of R = P (Y < X) for exponential distribution under progressive type-II censoring. J. Stat. Comput. Simul. 2012, 82, 729–744. [Google Scholar]
- Xia, Z.P.; Yu, J.Y.; Cheng, L.D.; Liu, L.F.; Wang, W.M. Study on the breaking strength of jute fibres using modified Weibull distribution. Compos. Part A Appl. Sci. Manuf. 2009, 40, 54–59. [Google Scholar] [CrossRef]
MLE | MPS | SE | Linex | Linex | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | |||
1.2 | 15, 10 | 0.0049 | 0.0277 | 0.0532 | 0.0254 | 0.0243 | 0.0287 | 0.0020 | 0.0243 | 0.0491 | 0.0355 | |
0.1436 | 0.3000 | 0.0030 | 0.1417 | 0.1798 | 0.2937 | 0.0190 | 0.1463 | 0.3702 | 0.5598 | |||
0.1648 | 0.1558 | −0.2209 | 0.1386 | 0.1514 | 0.1445 | 0.0531 | 0.1038 | 0.2583 | 0.2130 | |||
R | 0.0087 | 0.0088 | −0.0285 | 0.0078 | 0.0074 | 0.0083 | −0.0053 | 0.0078 | 0.0205 | 0.0090 | ||
0.0172 | 0.0099 | −0.0210 | 0.0069 | 0.0091 | 0.0089 | 0.0096 | 0.0086 | 0.0081 | 0.0092 | |||
0.0106 | 0.0103 | −0.0301 | 0.0088 | 0.0059 | 0.0097 | −0.0014 | 0.0092 | 0.0132 | 0.0103 | |||
30, 20 | −0.0037 | 0.0125 | 0.0284 | 0.0121 | 0.0057 | 0.0127 | −0.0020 | 0.0118 | 0.0171 | 0.0139 | ||
0.0731 | 0.1169 | 0.0026 | 0.0778 | 0.0969 | 0.1190 | 0.0190 | 0.0858 | 0.1873 | 0.1795 | |||
0.0906 | 0.0657 | −0.1397 | 0.0672 | 0.0844 | 0.0639 | 0.0375 | 0.0534 | 0.1334 | 0.0800 | |||
R | 0.0077 | 0.0043 | −0.0160 | 0.0040 | 0.0073 | 0.0042 | 0.0005 | 0.0040 | 0.0158 | 0.0045 | ||
0.0120 | 0.0046 | −0.0120 | 0.0037 | 0.0086 | 0.0044 | 0.0086 | 0.0043 | 0.0081 | 0.0045 | |||
0.0090 | 0.0050 | −0.0169 | 0.0045 | 0.0054 | 0.0048 | 0.0013 | 0.0047 | 0.0124 | 0.0051 | |||
70, 80 | 0.0021 | 0.0052 | 0.0148 | 0.0052 | 0.0056 | 0.0053 | 0.0017 | 0.0051 | 0.0109 | 0.0056 | ||
0.0156 | 0.0199 | −0.0024 | 0.0171 | 0.0214 | 0.0200 | 0.0030 | 0.0185 | 0.0406 | 0.0225 | |||
0.0301 | 0.0191 | −0.0718 | 0.0217 | 0.0285 | 0.0188 | 0.0132 | 0.0177 | 0.0440 | 0.0205 | |||
R | 0.0012 | 0.0014 | −0.0074 | 0.0014 | 0.0014 | 0.0014 | −0.0008 | 0.0014 | 0.0017 | 0.0014 | ||
0.0028 | 0.0018 | −0.0062 | 0.0016 | 0.0059 | 0.0017 | 0.0018 | 0.0017 | −0.0033 | 0.0018 | |||
0.0014 | 0.0018 | −0.0081 | 0.0017 | 0.0011 | 0.0018 | −0.0011 | 0.0018 | 0.0014 | 0.0018 | |||
120, 130 | −0.0004 | 0.0032 | 0.0088 | 0.0032 | 0.0015 | 0.0032 | −0.0011 | 0.0031 | 0.0041 | 0.0033 | ||
0.0099 | 0.0117 | −0.0023 | 0.0106 | 0.0141 | 0.0118 | 0.0029 | 0.0112 | 0.0257 | 0.0127 | |||
0.0178 | 0.0110 | −0.0516 | 0.0127 | 0.0177 | 0.0111 | 0.0086 | 0.0106 | 0.0268 | 0.0116 | |||
R | 0.0016 | 0.0008 | −0.0045 | 0.0008 | 0.0013 | 0.0008 | 0.0006 | 0.0008 | 0.0012 | 0.0008 | ||
0.0027 | 0.0010 | −0.0037 | 0.0010 | 0.0019 | 0.0010 | 0.0017 | 0.0010 | 0.0014 | 0.0010 | |||
0.0019 | 0.0011 | −0.0049 | 0.0010 | 0.0010 | 0.0011 | 0.0010 | 0.0010 | 0.0013 | 0.0011 | |||
3 | 15, 10 | 0.0008 | 0.0297 | 0.0500 | 0.0268 | 0.0170 | 0.0295 | −0.0044 | 0.0255 | 0.0404 | 0.0354 | |
0.6988 | 3.7569 | −0.2446 | 1.2033 | 0.7271 | 3.1044 | −0.2802 | 0.6724 | 2.0324 | 9.9563 | |||
0.1879 | 0.1722 | −0.2063 | 0.1396 | 0.1823 | 0.1634 | 0.0853 | 0.1161 | 0.2871 | 0.2371 | |||
R | 0.0083 | 0.0038 | −0.0359 | 0.0054 | 0.0074 | 0.0036 | −0.0188 | 0.0040 | 0.0302 | 0.0040 | ||
0.0200 | 0.0102 | −0.0255 | 0.0079 | 0.0118 | 0.0092 | 0.0069 | 0.0089 | 0.0139 | 0.0093 | |||
0.0106 | 0.0068 | −0.0376 | 0.0077 | 0.0063 | 0.0064 | −0.0119 | 0.0065 | 0.0208 | 0.0066 | |||
30, 20 | −0.0006 | 0.0128 | 0.0330 | 0.0126 | 0.0087 | 0.0131 | −0.0021 | 0.0122 | 0.0200 | 0.0145 | ||
0.2951 | 0.9614 | −0.2109 | 0.5157 | 0.3682 | 1.0225 | −0.1416 | 0.4119 | 1.0404 | 2.8913 | |||
0.0839 | 0.0686 | −0.1523 | 0.0725 | 0.0842 | 0.0679 | 0.0384 | 0.0573 | 0.1321 | 0.0840 | |||
R | 0.0048 | 0.0017 | −0.0231 | 0.0024 | 0.0053 | 0.0017 | −0.0099 | 0.0018 | 0.0207 | 0.0021 | ||
0.0096 | 0.0042 | −0.0191 | 0.0038 | 0.0058 | 0.0040 | 0.0026 | 0.0039 | 0.0088 | 0.0041 | |||
0.0059 | 0.0030 | −0.0250 | 0.0035 | 0.0043 | 0.0030 | −0.0065 | 0.0030 | 0.0150 | 0.0032 | |||
70, 80 | 0.0018 | 0.0052 | 0.0148 | 0.0051 | 0.0058 | 0.0053 | 0.0013 | 0.0051 | 0.0103 | 0.0055 | ||
0.0695 | 0.1503 | −0.1194 | 0.1294 | 0.0872 | 0.1569 | −0.0389 | 0.1239 | 0.2277 | 0.2375 | |||
0.0254 | 0.0168 | −0.0770 | 0.0205 | 0.0259 | 0.0169 | 0.0111 | 0.0159 | 0.0411 | 0.0183 | |||
R | 0.0009 | 0.0006 | −0.0101 | 0.0007 | 0.0026 | 0.0006 | −0.0032 | 0.0006 | 0.0047 | 0.0006 | ||
0.0026 | 0.0017 | −0.0086 | 0.0016 | 0.0028 | 0.0017 | 0.0023 | 0.0017 | 0.0029 | 0.0017 | |||
0.0010 | 0.0012 | −0.0111 | 0.0013 | −0.0021 | 0.0012 | −0.0024 | 0.0012 | 0.0025 | 0.0012 | |||
120, 130 | −0.0014 | 0.0028 | 0.0079 | 0.0027 | 0.0006 | 0.0028 | −0.0012 | 0.0027 | 0.0032 | 0.0029 | ||
0.0643 | 0.0946 | −0.0644 | 0.0817 | 0.0771 | 0.0970 | −0.0010 | 0.0806 | 0.1611 | 0.1301 | |||
0.0217 | 0.0111 | −0.0478 | 0.0122 | 0.0224 | 0.0111 | 0.0135 | 0.0106 | 0.0314 | 0.0118 | |||
R | 0.0020 | 0.0003 | −0.0055 | 0.0004 | 0.0020 | 0.0003 | −0.0004 | 0.0003 | 0.0045 | 0.0004 | ||
0.0031 | 0.0009 | −0.0046 | 0.0009 | 0.0023 | 0.0009 | 0.0022 | 0.0009 | 0.0025 | 0.0009 | |||
0.0023 | 0.0006 | −0.0060 | 0.0007 | 0.0020 | 0.0006 | 0.0004 | 0.0006 | 0.0024 | 0.0007 |
MLE | MPS | SE | LINEX c = 2 | LINEX c = −2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n, m | Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | |
15, 10 | 0.0079 | 0.0301 | 0.0553 | 0.0273 | 0.0268 | 0.0310 | 0.0044 | 0.0257 | 0.0513 | 0.0385 | |
0.0661 | 0.1167 | 0.0483 | 0.0726 | 0.0970 | 0.1223 | 0.0280 | 0.0787 | 0.1771 | 0.1958 | ||
0.1784 | 0.1788 | −0.2085 | 0.1467 | 0.1578 | 0.1609 | 0.0604 | 0.1168 | 0.2633 | 0.2333 | ||
R | 0.0071 | 0.0110 | −0.0158 | 0.0082 | 0.0075 | 0.0103 | 0.0015 | 0.0096 | 0.0156 | 0.0111 | |
0.0148 | 0.0091 | −0.0136 | 0.0061 | 0.0087 | 0.0082 | 0.0107 | 0.0080 | 0.0064 | 0.0084 | ||
0.0087 | 0.0113 | −0.0185 | 0.0084 | 0.0061 | 0.0105 | 0.0027 | 0.0099 | 0.0097 | 0.0112 | ||
30, 20 | −0.0046 | 0.0133 | 0.0289 | 0.0130 | 0.0046 | 0.0134 | −0.0060 | 0.0125 | 0.0158 | 0.0146 | |
0.0155 | 0.0368 | 0.0149 | 0.0291 | 0.0339 | 0.0391 | 0.0028 | 0.0323 | 0.0683 | 0.0496 | ||
0.0819 | 0.0627 | −0.1533 | 0.0702 | 0.0740 | 0.0608 | 0.0283 | 0.0515 | 0.1214 | 0.0750 | ||
R | 0.0040 | 0.0052 | −0.0110 | 0.0043 | 0.0052 | 0.0051 | 0.0011 | 0.0049 | 0.0095 | 0.0054 | |
0.0099 | 0.0042 | −0.0085 | 0.0032 | 0.0076 | 0.0041 | 0.0085 | 0.0040 | 0.0062 | 0.0041 | ||
0.0059 | 0.0054 | −0.0120 | 0.0044 | 0.0056 | 0.0053 | 0.0024 | 0.0051 | 0.0077 | 0.0055 | ||
70, 80 | 0.0017 | 0.0048 | 0.0146 | 0.0048 | 0.0046 | 0.0049 | 0.0015 | 0.0047 | 0.0105 | 0.0051 | |
0.0011 | 0.0080 | 0.0070 | 0.0074 | 0.0056 | 0.0082 | −0.0022 | 0.0079 | 0.0136 | 0.0087 | ||
0.0319 | 0.0181 | −0.0703 | 0.0204 | 0.0297 | 0.0179 | 0.0148 | 0.0168 | 0.0448 | 0.0195 | ||
R | −0.0005 | 0.0015 | −0.0047 | 0.0014 | −0.0011 | 0.0015 | −0.0010 | 0.0015 | −0.0007 | 0.0015 | |
0.0016 | 0.0014 | −0.0045 | 0.0013 | 0.0000 | 0.0014 | 0.0012 | 0.0014 | −0.0011 | 0.0014 | ||
0.0000 | 0.0017 | −0.0056 | 0.0015 | −0.0012 | 0.0017 | −0.0008 | 0.0016 | −0.0015 | 0.0017 | ||
120, 130 | 0.0003 | 0.0029 | 0.0094 | 0.0029 | 0.0029 | 0.0030 | 0.0003 | 0.0029 | 0.0056 | 0.0030 | |
0.0008 | 0.0053 | 0.0048 | 0.0050 | 0.0040 | 0.0053 | −0.0007 | 0.0052 | 0.0089 | 0.0055 | ||
0.0182 | 0.0106 | −0.0508 | 0.0122 | 0.0167 | 0.0105 | 0.0079 | 0.0101 | 0.0255 | 0.0111 | ||
R | 0.0000 | 0.0010 | −0.0030 | 0.0009 | −0.0002 | 0.0010 | −0.0005 | 0.0010 | 0.0001 | 0.0010 | |
0.0014 | 0.0009 | −0.0029 | 0.0008 | 0.0005 | 0.0008 | 0.0011 | 0.0008 | −0.0002 | 0.0009 | ||
0.0004 | 0.0011 | −0.0036 | 0.0010 | −0.0002 | 0.0011 | −0.0001 | 0.0011 | −0.0004 | 0.0011 | ||
15, 10 | 0.1150 | 0.2447 | −0.0592 | 0.1257 | 0.1463 | 0.2372 | −0.0225 | 0.1306 | 0.3595 | 0.5044 | |
0.2974 | 1.0617 | −0.1307 | 0.4164 | 0.3293 | 0.8927 | −0.1335 | 0.2773 | 0.9353 | 2.6420 | ||
1.6780 | 2.9497 | 1.2902 | 1.7569 | 1.5195 | 2.4006 | 1.2555 | 1.6072 | 1.6757 | 2.9435 | ||
R | 0.0046 | 0.0115 | −0.0136 | 0.0084 | 0.0051 | 0.0103 | −0.0166 | 0.0079 | 0.0265 | 0.0136 | |
0.0033 | 0.0026 | 0.0077 | 0.0020 | 0.0003 | 0.0023 | 0.0046 | 0.0020 | −0.0053 | 0.0025 | ||
0.0016 | 0.0093 | 0.0009 | 0.0066 | −0.0013 | 0.0083 | −0.0038 | 0.0066 | −0.0016 | 0.0101 | ||
30, 20 | 0.0588 | 0.0994 | −0.0374 | 0.0671 | 0.0736 | 0.0942 | −0.0107 | 0.0685 | 0.1687 | 0.1445 | |
0.1925 | 0.3633 | −0.0542 | 0.2030 | 0.2147 | 0.3535 | −0.0294 | 0.1648 | 0.5131 | 0.8275 | ||
1.5853 | 2.5706 | 1.3509 | 1.8712 | 1.4917 | 2.2741 | 1.2963 | 1.6999 | 1.5866 | 2.5818 | ||
R | 0.0081 | 0.0055 | −0.0042 | 0.0044 | 0.0087 | 0.0051 | −0.0044 | 0.0041 | 0.0226 | 0.0064 | |
0.0025 | 0.0012 | 0.0053 | 0.0010 | 0.0012 | 0.0011 | 0.0034 | 0.0010 | −0.0012 | 0.0012 | ||
0.0041 | 0.0045 | 0.0031 | 0.0036 | 0.0029 | 0.0041 | 0.0008 | 0.0034 | 0.0047 | 0.0047 | ||
70, 80 | 0.0162 | 0.0358 | −0.0290 | 0.0310 | 0.0251 | 0.0345 | −0.0130 | 0.0302 | 0.0656 | 0.0422 | |
0.0392 | 0.0555 | −0.0454 | 0.0469 | 0.0390 | 0.0527 | −0.0245 | 0.0436 | 0.1027 | 0.0695 | ||
1.5309 | 2.3612 | 1.4287 | 2.0573 | 1.4586 | 2.1424 | 1.3164 | 1.7412 | 1.5106 | 2.2994 | ||
R | 0.0019 | 0.0017 | −0.0010 | 0.0016 | 0.0004 | 0.0016 | −0.0010 | 0.0015 | 0.0015 | 0.0017 | |
0.0013 | 0.0005 | 0.0036 | 0.0005 | 0.0002 | 0.0005 | 0.0024 | 0.0004 | −0.0023 | 0.0005 | ||
0.0014 | 0.0016 | 0.0031 | 0.0015 | −0.0004 | 0.0015 | 0.0017 | 0.0015 | −0.0030 | 0.0016 | ||
120, 130 | 0.0123 | 0.0218 | −0.0172 | 0.0198 | 0.0177 | 0.0209 | −0.0068 | 0.0191 | 0.0434 | 0.0240 | |
0.0227 | 0.0346 | −0.0347 | 0.0312 | 0.0225 | 0.0325 | −0.0195 | 0.0292 | 0.0638 | 0.0388 | ||
1.5163 | 2.3093 | 1.4469 | 2.1030 | 1.4502 | 2.1119 | 1.3188 | 1.7448 | 1.4942 | 2.2428 | ||
R | 0.0006 | 0.0010 | −0.0016 | 0.0010 | −0.0003 | 0.0010 | −0.0014 | 0.0009 | 0.0005 | 0.0010 | |
0.0004 | 0.0003 | 0.0019 | 0.0003 | −0.0002 | 0.0003 | 0.0012 | 0.0003 | −0.0018 | 0.0003 | ||
0.0003 | 0.0010 | 0.0012 | 0.0009 | −0.0008 | 0.0009 | 0.0004 | 0.0009 | −0.0024 | 0.0010 |
MLE | MPS | SE | Linex | Linex | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | |||
0.5 | 15, 10 | 0.1534 | 0.3419 | −0.0348 | 0.1627 | 0.1886 | 0.3457 | 0.0156 | 0.1882 | 0.3976 | 0.6597 | |
0.0114 | 0.0407 | 0.0442 | 0.0331 | 0.0281 | 0.0403 | −0.0007 | 0.0322 | 0.0596 | 0.0516 | |||
−0.7986 | 0.8978 | −1.1912 | 1.5197 | −0.7950 | 0.8877 | −0.9018 | 0.9266 | −0.6748 | 0.6167 | |||
R | −0.0069 | 0.0075 | 0.0247 | 0.0067 | −0.0051 | 0.0071 | 0.0022 | 0.0065 | −0.0132 | 0.0076 | ||
0.0002 | 0.0010 | 0.0123 | 0.0011 | −0.0006 | 0.0010 | 0.0052 | 0.0010 | −0.0065 | 0.0010 | |||
−0.0042 | 0.0047 | 0.0219 | 0.0045 | −0.0044 | 0.0044 | 0.0052 | 0.0042 | −0.0148 | 0.0047 | |||
30, 20 | 0.0488 | 0.0941 | −0.0450 | 0.0658 | 0.0699 | 0.0963 | −0.0073 | 0.0739 | 0.1568 | 0.1396 | ||
0.0078 | 0.0196 | 0.0306 | 0.0178 | 0.0197 | 0.0207 | 0.0045 | 0.0183 | 0.0360 | 0.0239 | |||
−0.9082 | 0.8847 | −1.1410 | 1.3523 | −0.6905 | 0.8786 | −0.9564 | 0.9685 | −0.8487 | 0.7836 | |||
R | −0.0014 | 0.0037 | 0.0183 | 0.0036 | 0.0023 | 0.0036 | 0.0037 | 0.0035 | −0.0036 | 0.0037 | ||
0.0007 | 0.0005 | 0.0083 | 0.0005 | 0.0004 | 0.0005 | 0.0034 | 0.0005 | −0.0028 | 0.0005 | |||
−0.0005 | 0.0022 | 0.0158 | 0.0023 | −0.0028 | 0.0022 | 0.0047 | 0.0021 | −0.0055 | 0.0022 | |||
70, 80 | 0.0203 | 0.0351 | −0.0251 | 0.0300 | 0.0308 | 0.0363 | −0.0024 | 0.0322 | 0.0658 | 0.0431 | ||
−0.0016 | 0.0045 | 0.0128 | 0.0045 | 0.0015 | 0.0045 | −0.0025 | 0.0044 | 0.0057 | 0.0047 | |||
−0.7969 | 0.7957 | −1.0717 | 1.1648 | −0.6897 | 0.8495 | −0.9082 | 0.8198 | −0.6943 | 0.8076 | |||
R | −0.0019 | 0.0011 | 0.0090 | 0.0011 | −0.0020 | 0.0011 | 0.0005 | 0.0011 | −0.0046 | 0.0011 | ||
−0.0001 | 0.0002 | 0.0040 | 0.0002 | −0.0004 | 0.0002 | 0.0012 | 0.0002 | −0.0021 | 0.0002 | |||
−0.0012 | 0.0007 | 0.0078 | 0.0008 | −0.0016 | 0.0007 | 0.0012 | 0.0007 | −0.0045 | 0.0007 | |||
120, 130 | 0.0167 | 0.0203 | −0.0131 | 0.0181 | 0.0230 | 0.0204 | 0.0034 | 0.0189 | 0.0431 | 0.0228 | ||
0.0023 | 0.0029 | 0.0120 | 0.0030 | 0.0014 | 0.0029 | 0.0013 | 0.0029 | 0.0056 | 0.0030 | |||
−0.6986 | 0.6983 | −1.0555 | 1.1244 | −0.5982 | 0.9746 | −0.9929 | 0.9966 | −0.7966 | 0.6945 | |||
R | −0.0006 | 0.0007 | 0.0067 | 0.0007 | −0.0008 | 0.0007 | 0.0007 | 0.0007 | −0.0022 | 0.0007 | ||
−0.0001 | 0.0001 | 0.0027 | 0.0001 | −0.0003 | 0.0001 | 0.0006 | 0.0001 | −0.0013 | 0.0001 | |||
−0.0005 | 0.0004 | 0.0055 | 0.0005 | −0.0008 | 0.0004 | 0.0008 | 0.0004 | −0.0025 | 0.0005 | |||
5 | 15, 10 | 0.1411 | 0.2673 | −0.0398 | 0.1298 | 0.1705 | 0.2550 | 0.0063 | 0.1426 | 0.3723 | 0.4998 | |
0.9443 | 5.1602 | −0.6568 | 4.8828 | 0.9240 | 3.2404 | −1.0213 | 2.4227 | 0.8676 | 2.0564 | |||
−0.8350 | 0.8426 | −1.2200 | 1.5916 | −0.8098 | 0.7900 | −0.9121 | 0.9463 | −0.6930 | 0.6373 | |||
R | 0.0048 | 0.0065 | −0.0376 | 0.0072 | 0.0064 | 0.0059 | −0.0519 | 0.0079 | 0.0491 | 0.0077 | ||
−0.0008 | 0.0028 | 0.0018 | 0.0022 | −0.0036 | 0.0026 | −0.0052 | 0.0024 | −0.0080 | 0.0028 | |||
−0.0047 | 0.0077 | −0.0158 | 0.0062 | −0.0072 | 0.0073 | −0.0295 | 0.0072 | 0.0007 | 0.0079 | |||
30, 20 | 0.0481 | 0.0924 | −0.0456 | 0.0645 | 0.0685 | 0.0968 | −0.0078 | 0.0742 | 0.1543 | 0.1392 | ||
0.7094 | 4.0008 | −0.4500 | 1.9359 | 0.8007 | 3.8786 | −0.6194 | 1.3034 | 0.6743 | 1.2747 | |||
−0.9142 | 0.8958 | −1.1470 | 1.3641 | −0.8971 | 0.8635 | −0.9471 | 0.9512 | −0.8413 | 0.7704 | |||
R | 0.0073 | 0.0034 | −0.0198 | 0.0035 | 0.0085 | 0.0033 | −0.0281 | 0.0036 | 0.0423 | 0.0051 | ||
0.0023 | 0.0014 | 0.0035 | 0.0012 | 0.0007 | 0.0014 | −0.0017 | 0.0013 | 0.0016 | 0.0015 | |||
0.0029 | 0.0039 | −0.0054 | 0.0033 | 0.0015 | 0.0039 | −0.0148 | 0.0037 | 0.0143 | 0.0043 | |||
70, 80 | 0.0292 | 0.0375 | −0.0173 | 0.0313 | 0.0371 | 0.0375 | 0.0040 | 0.0331 | 0.0717 | 0.0447 | ||
0.1507 | 0.5661 | −0.2917 | 0.4941 | 0.1955 | 0.5947 | −0.2179 | 0.4157 | 0.6471 | 1.1386 | |||
−0.9795 | 0.9769 | −1.0820 | 1.1866 | −0.9698 | 0.9579 | −0.9869 | 0.9912 | −0.9485 | 0.9169 | |||
R | −0.0002 | 0.0011 | −0.0106 | 0.0012 | 0.0004 | 0.0011 | −0.0101 | 0.0011 | 0.0120 | 0.0013 | ||
−0.0006 | 0.0006 | 0.0010 | 0.0005 | −0.0013 | 0.0006 | −0.0008 | 0.0006 | −0.0015 | 0.0006 | |||
−0.0019 | 0.0016 | −0.0038 | 0.0015 | −0.0025 | 0.0015 | −0.0058 | 0.0015 | 0.0014 | 0.0016 | |||
120, 130 | 0.0148 | 0.0201 | −0.0148 | 0.0180 | 0.0209 | 0.0201 | 0.0015 | 0.0187 | 0.0409 | 0.0224 | ||
0.1301 | 0.3287 | −0.1725 | 0.2878 | 0.1566 | 0.3317 | −0.1065 | 0.2470 | 0.4573 | 0.6032 | |||
−0.9798 | 0.9697 | −1.0493 | 1.1101 | −0.9722 | 0.9548 | −0.9834 | 0.9766 | −0.9571 | 0.9254 | |||
R | 0.0016 | 0.0006 | −0.0056 | 0.0006 | 0.0018 | 0.0006 | −0.0050 | 0.0006 | 0.0092 | 0.0007 | ||
0.0002 | 0.0003 | 0.0011 | 0.0003 | −0.0004 | 0.0003 | −0.0002 | 0.0003 | −0.0004 | 0.0003 | |||
0.0002 | 0.0009 | −0.0013 | 0.0008 | −0.0003 | 0.0008 | −0.0027 | 0.0008 | 0.0023 | 0.0009 |
DKS | PKS | ||||
---|---|---|---|---|---|
x | estimates | 228.7034 | 1.084648 | 0.15666 | 0.4109 |
SE | 158.6319 | 0.146678 | |||
y | estimates | 490.8034 | 1.183035 | 0.17014 | 0.3137 |
SE | 370.751 | 0.152611 |
R | |||||||
---|---|---|---|---|---|---|---|
MLE | estimates | 284.8807 | 385.4952 | 1.1330 | 0.5750 | 0.2952 | 0.4087 |
SE | 146.2288 | 209.7269 | 0.1059 | ||||
CV | 51.33% | 54.40% | 9.35% | ||||
MPS | estimates | 244.1034 | 481.0354 | 1.1574 | 0.6634 | 0.3660 | 0.4919 |
SE | 130.3688 | 205.3030 | 0.1057 | ||||
CV | 53.41% | 42.68% | 9.13% | ||||
Bayesian | estimates | 331.9837 | 470.0805 | 1.1588 | 0.5861 | 0.2785 | 0.3975 |
SE | 125.8291 | 176.8997 | 0.0758 | ||||
CV | 37.90% | 37.63% | 6.54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussam, E.; Sabry, M.A.; Abd El-Raouf, M.M.; Almetwally, E.M. Fuzzy vs. Traditional Reliability Model for Inverse Weibull Distribution. Axioms 2023, 12, 582. https://doi.org/10.3390/axioms12060582
Hussam E, Sabry MA, Abd El-Raouf MM, Almetwally EM. Fuzzy vs. Traditional Reliability Model for Inverse Weibull Distribution. Axioms. 2023; 12(6):582. https://doi.org/10.3390/axioms12060582
Chicago/Turabian StyleHussam, Eslam, Mohamed A. Sabry, M. M. Abd El-Raouf, and Ehab M. Almetwally. 2023. "Fuzzy vs. Traditional Reliability Model for Inverse Weibull Distribution" Axioms 12, no. 6: 582. https://doi.org/10.3390/axioms12060582