A Relation-Theoretic Metrical Fixed Point Theorem for Rational Type Contraction Mapping with an Application
Abstract
:1. Introduction
- (i)
- Enlarging the ambient space;
- (ii)
- Improving the underlying contraction condition;
- (iii)
- Weakening the involved metrical notions.
2. Preliminaries
- (i)
- Reflexive if ;
- (ii)
- Symmetric if then ;
- (iii)
- Anti-symmetric if and then ;
- (iv)
- Transitive if and then ;
- (v)
- A partial order if ℜ is reflexive, anti-symmetric and transitive.
- (i)
- The dual relation, transpose or inverse of ℜ, signified by is interpreted by,
- (ii)
- Symmetric closure of ℜ, is defined to be the set ℜ∪ (i.e., ).
- (i)
- (ii)
3. Main Result
- (i)
- is ℜ-complete;
- (ii)
- is non-empty;
- (iii)
- ℜ is T-closed;
- (iv)
- Either T is continuous or ℜ is d-self closed;
- (v)
- There exist with such that
- (i’)
- is non-empty;
- (ii’)
- ℜ is T-closed;
- (iii’)
- is ℜ-complete;
- (iv’)
- Either T is ℜ-continuous or ℜ is d-self closed;
- (v’)
- There exist such that
- (vi’)
- is -directed.
4. Application to Non-Linear Integral Equations
- (i)
- f is continuous and is integrable w.r.t r on ;
- (ii)
- for all where
- (iii)
- For all and with
- (iv)
- There exist for all
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Boyd, D.W.; Wong, J.S. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Browder, F.E. On the convergence of successive approximations for nonlinear functional equations. Indag. Math. Proc. 1968, 71, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Jleli, M.; Samet, B.; Vetro, C. Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces. J. Inequalities Appl. 2014, 2014, 426. [Google Scholar] [CrossRef] [Green Version]
- Sk, F.; Hossain, A.; Khan, Q.H. Relation-theoretic metrical coincidence theorems under weak c-contractions and k-contractions. AIMS Math. 2021, 6, 13072–13091. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Aydi, H.; Mlaiki, N.; Gardašević-Filipović, M.; Kukić, K.; Radenović, S.; de la Sen, M. Some new Observations and Results for convex Contractions of istratescu’s type. Symmetry 2019, 11, 1457. [Google Scholar] [CrossRef] [Green Version]
- Ameer, E.; Aydi, H.; Arshad, M.; Alsamir, H.; Noorani, M.S. Hybrid multivalued type contraction mappings in αK-complete partial b-metric spaces and applications. Symmetry 2019, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Turinici, M. Fixed points for monotone iteratively local contractions. Demonstr. Math. 1986, 19, 171–180. [Google Scholar]
- Nieto, J.J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Dass, B.K.; Gupta, S. An extension of banach contraction principle through rational expression. Indian J. Pure Appl. Math. 1975, 6, 1455–1458. [Google Scholar]
- Cabrera, I.; Harjani, J.; Sadarangani, K. A fixed point theorem for contractions of rational type in partially ordered metric spaces. Ann. Dell’Universita’Di Ferrara 2013, 59, 251–258. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 11, 693–702. [Google Scholar] [CrossRef]
- Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Jäntschi, L.; Bálint, D.; Bolboacă, S.D. Multiple linear regressions by maximizing the likelihood under assumption of generalized Gauss-Laplace distribution of the error. Comput. Math. Methods Med. 2016, 2016, 8578156. [Google Scholar] [CrossRef]
- Saha, P.; Samanta, T.K.; Mondal, P.; Choudhury, B.S.; De La Sen, M. Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces. Mathematics 2020, 8, 974. [Google Scholar] [CrossRef]
- Fazli, H.; Sun, H.G.; Nieto, J.J. Fractional Langevin equation involving two fractional orders: Existence and uniqueness revisited. Mathematics 2020, 8, 743. [Google Scholar] [CrossRef]
- Hieu, N.T.; Van Dung, N. Some fixed point results for generalized rational type contraction mappings in partially ordered b-metric spaces. Facta Univ. Ser. Math. Inform. 2015, 30, 49–66. [Google Scholar]
- Lipschutz, S. Schaum’s Outline of Theory and Problems of Set Theory and Related Topics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J. Transitive closures of binary relations. i. Acta Univ. Carol. Math. Phys. 2007, 48, 55–69. [Google Scholar]
- Maddux, R. Relation Algebras: Studies in Logic and the Foundations of Mathematics; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samet, B.; Turinici, M. Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal. 2012, 13, 82–97. [Google Scholar]
- Skala, H. Trellis theory. Algebra Universalis 1971, 1, 218–233. [Google Scholar] [CrossRef]
- Stouti, A.; Maaden, A. Fixed points and common fixed points theorems in pseudo-ordered sets. Proyecciones Antofagasta 2013, 32, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Imdad, M. Relation-theoretic metrical coincidence theorems. Filomat 2015, 31, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Nieto, J.J.; Rodríguez-López, R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. Engl. Ser. 2007, 23, 2205–2212. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Reich, S. Some remarks concerning contraction mappings. Canad. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, A.; Khan, F.A.; Khan, Q.H. A Relation-Theoretic Metrical Fixed Point Theorem for Rational Type Contraction Mapping with an Application. Axioms 2021, 10, 316. https://doi.org/10.3390/axioms10040316
Hossain A, Khan FA, Khan QH. A Relation-Theoretic Metrical Fixed Point Theorem for Rational Type Contraction Mapping with an Application. Axioms. 2021; 10(4):316. https://doi.org/10.3390/axioms10040316
Chicago/Turabian StyleHossain, Asik, Faizan Ahmad Khan, and Qamrul Haq Khan. 2021. "A Relation-Theoretic Metrical Fixed Point Theorem for Rational Type Contraction Mapping with an Application" Axioms 10, no. 4: 316. https://doi.org/10.3390/axioms10040316
APA StyleHossain, A., Khan, F. A., & Khan, Q. H. (2021). A Relation-Theoretic Metrical Fixed Point Theorem for Rational Type Contraction Mapping with an Application. Axioms, 10(4), 316. https://doi.org/10.3390/axioms10040316