1. Introduction
Although packaging is an auxiliary industry for many manufacturing industries, it plays a key role, contributing significantly to the development of the economy. It is also widely considered to be one of the most important parts of logistic systems. The purpose of the earliest and most basic packaging was containing products, serving the stages of transportation, preservation, and display. The second benefit of packaging is protecting products from damage, deformation, theft, or reduction of quality due to external and environmental impacts such as air, humidity, water, and light. Furthermore, providing information on products on stamps, labels, or the cover is a legal requirement for packaging to help consumers better understand the product before making a purchasing decision. Furthermore, packaging has long been recognized as the silent salesperson and has been the focus of much recent regulation [
1]. It contributes to product positioning and brand identity. It is also a marketing and sales support tool. Product packaging with innovative designs and unique colors outstanding and suitable for brand identity publications will easily impress consumers and help them associate and remember products and brands more. Research and packaging design is a vital part of the product development strategy of most businesses that cannot be replaced.
Understanding the important role of packaging, as stated by the Vietnam Packaging Association (VINPAS), over the last 10 years, the packaging industry has been recognized as one of the fastest growing economic sectors in both size and the number of enterprises established in Vietnam [
2]. Currently, Vietnam has more than 900 packaging factories, and the numbers of companies is still increasing, about 70% of which are concentrated in the southern provinces [
3]. The Association of Vietnam Retailers (AVR) explained the first reason behind this development. The population of Vietnam is over 97 million, leading to the rise of domestic demand in the food and beverage industry, as well as for industrial and pharmaceutical product packaging [
4]. The Vietnamese food market is on an upward trend and is expected to grow annually by 13.05% (compound annual growth rate (CAGR) 2021–2025) [
5]. Besides that, Vietnam is one of the 17 countries with the highest pharmaceutical growth rate in the world, with a market size of about USD 5.1 billion (as stated by IMS Health) [
6]. Specifically, in the packaging industry, the proportion of food packaging is approximately one third to a half, while the percentage for electronics packaging is 5–10% and pharmaceutical and chemistry packaging is estimated to be 5–10% [
4].
Moreover, recently, the urbanization process has been developing quickly, along with the appearance of a series of foreign supermarkets that invested in Vietnam such as Big C, Aeon, and Lotte Mart. In addition, the habit of using packaged products has given the packaging industry many development opportunities. In addition, the high export market requirement in packing services is stimulating the development of this industry. The Vietnam packaging industry has a high average growth rate of 15–20% per year [
5]. In recent years, the attractiveness of the packaging industry in Vietnam has been proven, as many overseas manufacturers have selected Vietnam as an ideal destination to supply machines, devices, and goods and to invest in building factories. The market for packaging materials can be divided into a series of main segments, including paper and cardboard, plastic, metal, glass, wood, textiles, and other suitable materials such as foam and leather. Based on the statistical data from Thongke [
7],
Figure 1 summarizes the levels of some imported input materials for packaging production in Vietnam from 2010 to 2019.
In addition, in 2015, greenhouse gas (GHG) emissions from plastics accounted for 3.5 percent of the global annual GHG emissions [
8], and in 2018, Laura Parker emphasized that around 40 percent of the plastic created was for the packaging industry, which means this industry would also be responsible for the world’s pollution [
9]. Particularly, plastic packaging in Vietnam achieved a growth rate of 25 percent per year and accounted for the highest proportion in structural plastic (38–39%) [
10]. In 2019, the total consumption of paper material reached 3818 million tons, while the percentage of paper packaging production attained was over 80% [
10].
The packaging industry is undoubtedly considered a potential industry with high growth rate in Vietnam, but according to the National Steering Committee for Clean Water—Ministry of Natural Resources and Environment [
11], the paper manufacturing industry that includes the paper packaging industry is one of the most serious environmental polluting industries today, especially for water resources.
To face concerns about environmental pollution with a high amount of plastic waste, the global packaging operation is looking forward to producing active, intelligent [
12], and green packaging in the future. Some preliminary work was carried out in 2001, showing that various executives perceive how influential a strategy on how associated social responsibility affects the social and financial performance of an enterprise [
13]. Following the global trend, Vietnamese consumers are gradually switching to using green packaging to ensure their health and safety.
These packaging technologies are also known as the trend of environmentally friendly and sustainable development packaging. The solutions are integrating packaging with Internet of things (IoT) technology, recycling materials, reusable packaging products, and using fast decomposition packaging. All these actions aim to reduce hazardous waste in the environment, sustain materials, expand product storage life, and improve safety, management, and cost-effectiveness. At the same time, governments have been aware of and set out regulations to improve the environment. These commitments were agreed upon by worldwide governments. This tendency enhances tough technological competition among all enterprises in the packaging industry. Therefore, the biggest challenge now for this industry is not only finding customers but also investing in technological innovation that has the minimum impact on the environment by using eco-friendly materials and manufacturing processes to compete and catch up with the ever-growing production and sustain business. When the production process is not optimized, the waste of raw materials, fuel, and emissions will also create significant environmental impacts.
Moreover, in the new development context, Vietnam joined the World Trade Organization (WTO) in 2007 and attracted many foreign companies and corporations to come to Vietnam to seek investment opportunities. At this time, the Vietnam government has also allowed 100% foreign-owned companies to operate in the packaging industry [
14]. Considering some aspects of competitiveness and production materials, foreign direct investment (FDI) enterprises have shown superiority. Their machines and technology are very modern, have closed production lines, are mostly automated so their costs are low, and their productivity is very high. Vietnamese packaging enterprises also revealed many shortcomings, such as a lack of vision, unclear long-term strategy, poor governance, low productivity, lack of high-quality human resources, weak financial positions, and so on. In addition, the market still requires businesses in the industry to constantly research and create unique and more effective personalization and interaction. There is a major concern that the profit margins of packaging companies will be reduced more than before due to the increase in production costs, and the obstacle to technology transfer is one factor that inhibits the development of the green packaging market. Besides that, the number of consumers aware of the need to use green packaging is still not in the majority, so it is not enough for packaging companies to completely switch to supplying green packaging. If packaging enterprises do not utilize their competitive advantages and update the technology to adapt to growth trends, they will go backward and lose customers. To initiate a sustainable strategy in an operation, different administration systems, such as commodity expense, capital budgeting, information, and performance assessment, must be composed and defined [
13].
According to all these facts mentioned above, the purpose of this study is to identify and evaluate the performance and ranking of 10 packaging companies in Vietnam in each period from 2012 to 2023, by integrating the additive Holt-Winters (LTS(A,A,A)) forecasting model in Tableau and an epsilon-based measure of efficiency (EBM) in data envelopment analysis (DEA). Due to the fact that financial reporting plays an important role in the process of strategic decision-making, specifically decisions of an investment nature [
15], while all the packaging companies are trying to meet the market demands and sustain development and increase their competitive advantages or minimize weaknesses, the financial performance forecasting analysis in this study can show how financial variables change over time and hence support packaging companies to make strategic decisions, whether they should align their budgets or determine expenses to invest in new technology, materials, processes, and consultancy to adapt to global trends, because green supply chain management (GSCM) practices in the packaging industry contain the risks of high investment costs and low returns [
16]. Besides that, the results will also assist manufacturers, which need packaging services to find the most suitable partners and investors, who need to make investment decisions in this industry. This investigation is expected to add substantially to the understanding of applying EBM to DEA, the model which can give the score and ranking for each decision-making unit (DMU) performance in the experiment years and its implementation, contributing to the specific solution to improve the efficiency for the identified company.
There are five parts in this paper, and they are as follows.
Section 1 is an overview of the study that includes the packaging industry background, motivation, objectives, and the process of the research.
Section 2 reviews the literature of the packaging industry, the additive Holt-Winters model (LTS(A,A,A)), and an epsilon-based measure of efficiency (EBM) in DEA, proposes the data sources and figures out the input and output that would be applied for the methods.
Section 3 presents the empirical results, indicates assessed values, and calculates and discusses the outcomes.
Section 4 provides the conclusions, describes some elements that may affect the findings, and recommends future studies.
3. Results
3.1. Additive Holt-Winters Forecasting
3.1.1. Forecasting’s Results
In this section, through the data of 10 packaging companies from the period of 2012–2019 that were collected, the additive Holt-Winters additive model in Tableau will be applied to calculate the future data from 2020 to 2023. From the past data sequence, in applying the method, forecasting values for the inputs and outputs of all 10 DMUs from 2012 to 2023 are described in
Table A1 and
Table A2.
3.1.2. Forecasting Accuracy
According to the additive Holt-Winters forecasting model, there is a difference that exists between the predicted data value and the actual data value. In this research, the authors utilized the root mean square error (RMSE) and mean absolute percent error (MAPE) to calculate the accuracy of the forecasting values.
Table 3 illustrates the RMSE index per DMU. It can be seen from the table that all RMSE results were positive values and could be accepted.
As mentioned in
Table 2, for the MAPE parameter, if the MAPE index was under 20%, it meant the accuracy of the forecasted value was highly appreciable.
Table 4 identifies the average MAPE of each DMU.
It is apparent from
Table 4, all DMUs had MAPE indexes under 36%, and their mutual average was 10.56%. As such, all DMU predicted values had good accuracy and were close to the actual values. Furthermore, all predicted values for all DMUs from 2020 to 2023 in
Table A2 were non-negative values and acceptable to use in EBM analysis.
3.1.3. Smoothing Coefficients
According to the condition of smoothing coefficients in the additive Holt-Winters method, an acceptable α, β, γ index ranged from 0 to 1. The three smoothing constants were applied to forecast the future performance of packaging enterprises. The results of the alpha, beta and gamma that are shown in
Table A3 confirmed our data were appreciable when their values were accounted for from 0 to 0.5.
3.2. Assessing the Performance of DMUs
In this part, the EBM-I-C (input-oriented under constant returns-to-scale assumption) in DEA will be applied to assess the efficiency of each packaging company, based on the historical data (2012–2019) in
Table A1 and forecasted data (2020–2023) in
Table A2 obtained from the additive Holt-Winters forecasting results. The efficiency of each year will be presented in Tables 8 and 9 below.
One of the biggest concerns before assessing the efficiency of the DMUs through EBM was defining whether the data value was positive. Besides that, the relation between the input and output data was isotonic. The correlation coefficient would be used to define the relationship among two variables, and it would be ranged from −1 to +1. If the index was near +1, it meant the two variables had a strong correlation. In contrast, if the correlation coefficient was close to −1, it meant the input and output correspondence was low.
Table A4 presents the Pearson’s correlation coefficient of the DMUs for each year. As can be observed from the results, the correlation coefficient minimum was 0.6889. This means all the data variables were closely connected and acceptable to run EBM.
As stated in the EBM model, two parameters that combine the radial and nonradial models were established by an affinity index. The affinity index between two vectors was calculated to replace the Pearson’s correlation coefficient. Their appropriated values had to meet the requirement .
The diversity index of the vectors was determined as the deviation of variables and 0 ≤
D(
a,
b) =
D(
b,
a) ≤ 1/2. It was only equal to 0 when the two vectors were proportional. Both the affinity and diversity indicators were utilized to assure that the correspondence of the input and output variables was suitable for evaluating the efficiency of the DMUs with EBM. It can be seen from
Table 5 and
Table 6 the data variables satisfied the condition of the EBM model.
The weight of the inputs and outputs and the epsilon indicator played an essential role in eliminating the EBM score for each DMU. A weight index defines the proportional effect the input will have on the output.
Table 7 indicates that the entirety of the weight indexes were positive. In this case, this means that changing the input factors would have an impact on the outputs, and if the values of the input increased, the values of the output would grow.
The results of the epsilon for the EBM through the years in
Table A5 satisfied the condition 0 ≤ epsilon index ≤ 1. The efficiencies of 10 packaging enterprises were obtained based on the factors of weight and epsilon for EBM.
Table 8 and
Table 9 indicate the efficiency scores for the DMUs from the past to the future.
In general, all the enterprises in the packaging industry had high productivity, while there was no company with an efficiency score below 0.681 in the observation time from 2012 to 2023. As reported by
Table 8 and
Table 9, there were five DMUs with efficiency scores increasing over time from the past to the future. Specifically, they were DMU1, DMU4, DMU5, and DMU9. In contrast, only DMU8 showed a downward trend compared with the first period; however, its efficiency index remained high. Other DMUs presented the fluctuation trend over the same time span.
Figure 3 indicates the ranking positions of all companies from past to future (2012–2023).
Once a DMU gained the first ranking, that meant its theta index (θ) needed to be equal or closest to one, and all slacks for each variable needed to be the lowest and nearest to zero. Conversely, if the slack was high and the theta index was far from one, the DMU could not reach a high position. In the case where θ was higher than one, this meant the DMU was inefficient, and the values of the inputs needed to change accordingly to increase the efficiency and values of the outputs.
Table A6 describes theta (θ) and slack (s) in the solution for each unit.
It is interesting to note that in the past data sequence, DMU6 was the most inefficient unit, even with high efficiency scores of 0.95611 (in 2014), 0.98359 (in 2016), and 0.97447 (in 2017) while compared with the efficient unit (score = 1). Particularly, DMU6 had the theta θ = {1.044; 1.064; 1.005} (>1) in 2014, 2016, and 2017, respectively. The input value, theta and slack (s1, s2, and s3) indicators of DMU6 in 2014 in
Table A1 and
Table A6 were picked as a sample for the ideal suggestion emphasized for the inefficient unit. All input indexes were multiplied by θ = 1.044 without the slack. Furthermore, the total assets was reduced by the slack s1 = 384,480. The estimated input for the total assets was 650,097 × 1.044 − 384,480 = 294,221.268. Calculated accordingly, the optimal cost of goods sold was 692,997 × 1.044 − 71,033.5 = 652,455.368, and 47,851 × 1.044 − 0 = 49,956.444 for the operating expenses. DMU6 was advised to reduce the amount of total assets from 650,097 to 294,221.268 and the cost of goods sold from 692,997 to 652,455.368 and increase the operating expenses from 47,851 to 49,956.444 to have better performance.
It is apparent from
Table A6 that the incompetent DMUs in each period were different. Except for DMU6 mentioned above, DMU7 was unproductive in 2014, and so was DMU4 in 2015. In the future term, DMU2, 3, 8 and 10 were predicted to be inefficient. With a few exceptions, the years 2015, 2016, and 2017 illustrated that DMU7 got pretty good scores and rankings. In another year, DMU7 showed fluctuating results in its efficiency score, ranking around the fifth to eighth positions. DMU2 showed a high performance, but it was unstable. In 2012 and 2013, it had the highest rank at first with the score also being one. One year later, its position dropped significantly to ninth and seventh in 2014 and 2015. Between 2016 and 2010, it gained the first ranking with a score of one again. From 2021 to 2023, with its forecast value, it was predicted to fall to the fourth, sixth, and fifth positions, respectively. As can be seen from
Table 8 and
Table 9 and
Figure 3, compared with the other DMUs, based on the efficiency score and ranked in the order of DMU3, DMU6, and DMU10, these three DMUs were determined to be the most ineffective enterprises. In the same period, three companies’ scores fluctuated below one, and their ranks stayed around the last positions. As opposed to the developing companies, DMU8 was the most efficient enterprise from the initial years. It obtained the first position with the highest point of one in the first five years (2012–2016). Nevertheless, they could not remain stable from 2017 to 2023. It was predicted to be in the last group of low efficiency, with DMU8 falling to the last two positions—the ninth and tenth ranking—in 2022 and 2023 with scores of 0.8986 and 0.9110, respectively. The projected input values that were recommended for each inefficient DMU would not be the same based on the efficiency score, theta, and slack index calculations. However, in general, following the estimated instructions as with DMU6, we can see the common solutions for these DMUs were lowering the input values’ total assets and operating expenses to improve the values of the outputs, including the revenue and gross profit.
Overall, DMU5 started with the highest score of one, and it ranked first in 2012 and continuously maintained the same the same level until 2023. Its theta was always equal to one and the slacks were zero. DMU5 was defined as the most efficient unit over time. Following that, DMU1 presented steady growth for the whole time. Its position was fourth from 2012 to 2015. One year after, it increased rapidly to be the first leader among the DMUs. In 2019, its position fell to the fourth ranking again with a score of 0.9365. Then, it reversed positions to first with the highest score for the next four years. DMU4 denoted a slight change in its score and position for the first four years, from 2012 to 2015. Noticeably, its beginning position was fifth with a score of 0.888 and ranked sixth, seventh, and fifth in 2013, 2014, and 2015, respectively. It was even mentioned that it was inefficient in 2015 based on the theta and slack indexes. However, starting from 2016, it climbed to the dominant position together with DMU5 with an efficiency score of one and a ranking of first.
DMU9’s score substantially grew within 12 years, but due to it having the lowest score (0.6807) from the beginning, it still held the last ranking (tenth) among ten packaging companies between the year 2012 and 2019. Their position only changed from sixth to fourth, with a score from 0.9312 to 0.9663 from 2020 to 2023, respectively.
3.3. Discussion
The development potential of the packaging industry is expanding. However, Vietnamese packaging companies are facing a lot of pressure and great competition from many FDI enterprises. Specifically, following the global packaging trends combined with high technology and eco-friendly practices together with the COVID-19 pandemic, packaging enterprises need to deal with changes in consumer behavior. When customers turn to attain their fundamental priorities, which are food, shelter, water, and healthcare and pharmaceutical products, they are not focused on luxury order desires [
53]. In terms of the packaging materials, packaging companies all faced common difficulties under the impact of the crisis, such as breaking the supply chain in business, difficulty in approaching new customers, and not being able to implement a sales plan. However, packaging businesses also have many opportunities such as Vietnam’s e-commerce scale, which will continue to grow [
54]. Under the EU–Vietnam Free Trade Agreement (EVFTA), the import tax on Vietnam’s plastic bags into the EU market will be removed, creating a significant competitive advantage for the packaging industry [
55].
To have a deeper understanding not only of the investment and cooperation opportunities, but also the performance effectiveness of each firm in the packaging industry in Vietnam, based on the historical financial statements of 10 determined packaging companies from 2012 to 2019, this research evaluated the developing trends from the past, present, and future of all units by integrating the additive Holt-Winters model and epsilon-based measurement (EBM) of DEA. Throughout the analysis, manufacturer managers can find the most suitable company to collaborate with to sustain their business strategy and catch up with global trends. According to the empirical results, generally, all packaging companies had productivity from medium to high. DMU1, DMU4, and DMU5 were evaluated as the three most efficient units and ideal suppliers which reached the first rank and remained at it over time. In contrast, DMU3, DMU6, and DMU8 presented fluctuations and a downward trend and kept the last positions. Formulated on the calculation of feasible solutions of EBM, the inefficient and unstable units could change the input value for better performance of the output value. Besides that, they should have policies to improve their competitiveness in quality, reduce waste in the production process, attach value to maintaining long-term relationships with large customers, strengthen after-sales and customer care services, adjust the selling prices reasonably while ensuring profit, and finally invest in technical machinery and equipment to meet the strict requirements from the market.
This section may be divided by subheadings. It should provide a concise and precise description of the experimental results, their interpretation, as well as the experimental conclusions that can be drawn.
4. Conclusions
The packaging industry has an important role in a developing economy, especially in Vietnam, where the demand for producing products is increasing day by day, leading to an increase in the need for packaging. Packaging’s values are not only protecting products, but also its role as a sales and marketing tool. Along with the Fourth Industrial Revolution and high customer requirements, packaging companies are under pressure to deal with challenges to improve their core competencies through technology and associated services as suppliers. However, to adapt with the growth trends, which are being fast, flexible, convenient, good, cheap, and environmentally friendly, changing technology will be a big task for companies when it requires strong capital ability. With uncertain circumstances, financial forecasting and performance evaluation are necessary for packaging companies.
This research aimed to construct the efficiency and developing trends of 10 packaging operations from the past to the future by integrating the additive Holt-Winters model, an extended variation of Holt’s exponential smoothing that captures seasonality in Tableau and the EBM of DEA. Based on the collected original data from 2012 to 2019 for the packaging companies, the LTS(A,A,A) approach was employed to forecast the value of the data for the next four years (2019–2023), with the chosen inputs and outputs being total assets, cost of goods sold, operating expenses, revenues, and gross profit. The mean absolute percent error (MAPE) estimated the accuracy of the forecasting values. With the MAPE under 10.56%, the predicted data value in this research had good accuracy. Subsequently, the EBM model was applied to assess the decision-making unit (DMU) productivity by giving efficiency scores with rankings and then providing suggestions through the calculation of the theta and slack indexes for incompetent companies in order to improve their performance. The empirical results will first assist packaging company’s managers in defining their positions in the market and making long-term sustainable advancement decisions. Secondly, it will be valuable support for investors and manufacturers for choosing the best supplier for their business and making investment decisions. This finding also validates the usefulness of the Holt-Winters forecasting model and epsilon-based measure of efficiency (EBM) in data envelopment analysis (DEA), as the model can measure the performance of a decision-making unit (DMU) and contribute solutions for companies over the observation period, specifically for cases in the packaging industry. These frameworks’ combination can be adopted in multiple fields and different projects.
Although the research was successful, some limitations still remain. Since a company’s strategic decision-making process and performance can be defined and affected by diversified variations, including internal and external factors not be presented in a financial statement such as human resources and environmental factors, the study estimated the efficiency of packaging companies based on input and output indicators in financial reports. Accordingly, future investigations can address greater clarity on the links between other factors and their effects on the performance of the industry. The research models that were applied in this study are not the only methods for predicting and assessing the productivity of decision-making units. Future research can employ other frameworks and models to achieve their objectives and have a comparative measurement. Besides that, because many firms have not published their financial reports, the sample size was limited and less comparative. Hence, future studies can expand the research target and scope in other regions and other industries.