Synchronization, Control and Data Assimilation of the Lorenz System
<p>Conditional Lyapunov maximal exponent for different coupling directions: <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>x</mi> </msub> <mo>=</mo> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>y</mi> </msub> <mo>=</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>z</mi> </msub> <mo>=</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>. The black dotted lined marks the zero value while the blue continuous line marks the value of the Lyapunov exponent. In the last one, in orange, we also show the distance <span class="html-italic">d</span> (normalized at its maximum value obtained in the simulation) between the master and slave state variables for different coupling strengths (see also <a href="#algorithms-16-00213-f002" class="html-fig">Figure 2</a>).</p> "> Figure 2
<p>Asymptotic distance <span class="html-italic">d</span> as a function of the coupling strength <span class="html-italic">p</span> for different coupling directions. From left to right: <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">C</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">C</mi> <mi>x</mi> </msub> <mo>=</mo> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">C</mi> <mi>y</mi> </msub> <mo>=</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>The dependence of the synchronization threshold on the intermittent parameter <span class="html-italic">k</span> such that <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mi>k</mi> <mo>Δ</mo> <mi>t</mi> </mrow> </semantics></math> for different coupling directions and its linear fit obtained using the first 20 time steps. The other parameters of the simulation are: <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">C</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> for the others.</p> "> Figure 4
<p>Heat map of the state–variable distance <span class="html-italic">d</span> for different values of parameter coupling <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mi>π</mi> <msub> <mi>D</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>π</mi> <mo>≤</mo> <mn>1</mn> </mrow> </semantics></math>) and state–variable coupling <span class="html-italic">p</span> for some state–variable coupling directions <span class="html-italic">C</span> and parameter coupling direction <math display="inline"><semantics> <mi>χ</mi> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">C</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>χ</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">C</mi> <mi>x</mi> </msub> <mo>=</mo> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>χ</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">C</mi> <mi>z</mi> </msub> <mo>=</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>χ</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>;. The line <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> corresponds to <a href="#algorithms-16-00213-f002" class="html-fig">Figure 2</a>.</p> "> Figure 5
<p>The state–variable distance <span class="html-italic">d</span> (dashed line) and parameter distance (color) as a function of temperature <math display="inline"><semantics> <mi>θ</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.6</mn> <mo>≫</mo> <msub> <mi>p</mi> <mi>c</mi> </msub> </mrow> </semantics></math> and different coupling directions <span class="html-italic">C</span>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </semantics></math>. We set <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>The schematic of the pruned-enriching method. Lines denotes schematically the trajectories of replicas in the space of state variables and parameters. The dashed lines marks the trajectory of master system. Disks marks the elimination of replicas which are farther from the master one. Black dotted lines marks the pruning and enriching times, and the duplication of replicas are marked by the dashed colored lines with arrows. The variation of the duplication of the nearer replicas is either on one of the state variables or one of parameters.</p> "> Figure 7
<p>Parameter distance <span class="html-italic">D</span> after <span class="html-italic">M</span> repetitions for different amplitudes <math display="inline"><semantics> <mi>δ</mi> </semantics></math> with (<b>a</b>) <math display="inline"><semantics> <msup> <mi mathvariant="bold-italic">Q</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> </semantics></math> randomly initialized in the interval <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.5</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <msup> <mi mathvariant="bold-italic">Q</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> </semantics></math> initialized near the “true” values <math display="inline"><semantics> <mi mathvariant="bold-italic">Q</mi> </semantics></math> by adding a random noise of amplitude <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>) Variance of the distance <span class="html-italic">D</span> for different amplitudes <math display="inline"><semantics> <mi>δ</mi> </semantics></math> for the last interval. The vertical lines indicate when the ensemble was restored to <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The <math display="inline"><semantics> <msup> <mi mathvariant="bold-italic">Q</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> </semantics></math> are initialized as in (<b>a</b>).</p> "> Figure 8
<p>The distance between variables (black points, right axis) and parameters (color points, left axis) as a function of iterations (repetitions times number of samples of a trajectory) with the pruned-enriching method for 50 randomly selected replicas of the <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>10,000</mn> </mrow> </semantics></math> used to estimate the parameters. We used <math display="inline"><semantics> <mrow> <mi mathvariant="normal">d</mi> <mi>t</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, so the number of samples (time series) of a trajectory is 500, and we show <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> iterations. We consider the situation where only measurements in the coupling direction <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </semantics></math> are available at every <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> temporal steps <math display="inline"><semantics> <mrow> <mi mathvariant="normal">d</mi> <mi>t</mi> </mrow> </semantics></math>, and we used an embedding space of dimension <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Estimation (x) and standard deviation (blue area) of the parameters computed using the first half of the ensemble (<b>a</b>) with and (<b>b</b>) without cross-over. The true values are also shown (dotted orange lines).</p> ">
Abstract
:1. Introduction
2. Master–Slave Synchronization
2.1. Pecora–Carrol Synchronization
2.2. Conditional Coupling
2.3. Partial Conditional Coupling
2.4. Intermittent Synchronization
2.5. Generalized Synchronization
3. Parameter Estimation
4. Pruned-Enriching Approach
Algorithm 1 Pruned-enriching algorithm |
Require: for do for do if then ▷Algorithm 2 end if end for end for return |
Algorithm 2 Parameter updating step |
Require: ▷ return index of d sorted in ascending order for do if then while do end while else end if end for return |
5. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorenz, E. The Essence of Chaos (Jessie and John Danz Lectures); University of Washington Press: Washington, DC, USA, 1995; p. 240. [Google Scholar]
- Evensen, G.; Vossepoel, F.C.; van Leeuwen, P.J. Data Assimilation Fundamentals: A Unified Formulation of the State and Parameter Estimation Problem (Springer Textbooks in Earth Sciences, Geography and Environment); Springer: Berlin/Heidelberg, Germany, 2022; p. 415. [Google Scholar]
- Geer, A.J. Learning earth system models from observations: Machine learning or data assimilation? Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2021, 379, 20200089. [Google Scholar] [CrossRef] [PubMed]
- Bonavita, M.; Alan Geer, P.L.; Massart, S.; Chrust, M. Data Assimilation or Machine Learning? ECMWF Newsletter Number 167; Springer: Berlin/Heidelberg, Germany, 2021; Available online: https://www.ecmwf.int/en/newsletter/167/meteorology/data-assimilation-or-machine-learning (accessed on 13 February 2023).
- Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering (Studies in Nonlinearity); CRC Press: Boca Raton, FL, USA, 1994; p. 512. [Google Scholar]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Cambridge Nonlinear Science Series: Synchronization: A Universal Concept in Nonlinear Sciences Series Number 12; Cambridge nonlinear science series; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bagnoli, F.; Rechtman, R. Synchronization and maximum Lyapunov exponents of cellular automata. Phys. Rev. E 1999, 59, R1307–R1310. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Chua, L.O. The Genesis of Chua’s Circuit. Archiv Eelektrischen Übertragung 1992, 46, 250–257. [Google Scholar]
- Chua, L.O. A zoo of strange attractors from the canonical Chua’s circuits. In Proceedings of the 35th Midwest Symposium on Circuits and Systems, Washington, DC, USA, 9–12 August 1992; Volume 2, p. 916. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems. From hidden oscillations in hilbert–kolmogorov, aizerman, and kalman problems to hidden chaotic attractor in chua circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef]
- Kiseleva, M.A.; Kudryashova, E.V.; Kuznetsov, N.V.; Kuznetsova, O.A.; Leonov, G.A.; Yuldashev, M.V.; Yuldashev, R.V. Hidden and self-excited attractors in Chua circuit: Synchronization and SPICE simulation. Int. J. Parallel Emergent Distrib. Syst. 2017, 33, 513–523. [Google Scholar] [CrossRef]
- Zaqueros-Martinez, J.; Rodriguez-Gomez, G.; Tlelo-Cuautle, E.; Orihuela-Espina, F. Fuzzy Synchronization of Chaotic Systems with Hidden Attractors. Entropy 2023, 25, 495. [Google Scholar] [CrossRef] [PubMed]
- Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Pecora, L.M.; Carroll, T.L. Synchronization of chaotic systems. Chaos: Interdiscip. J. Nonlinear Sci. 2015, 25, 097611. [Google Scholar] [CrossRef] [PubMed]
- Rössler, O. An equation for continuous chaos. Phys. Lett. 1976, 57, 397–398. [Google Scholar] [CrossRef]
- Newcomb, R.; Sathyan, S. An RC op amp chaos generator. IEEE Trans. Circuits Syst. 1983, 30, 54–56. [Google Scholar] [CrossRef]
- May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Rulkov, N.F.; Sushchik, M.M.; Tsimring, L.S.; Abarbanel, H.D.I. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 1995, 51, 980–994. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Takens, F. Detecting strange attractors in turbulence. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar] [CrossRef]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a Time Series. Phys. Rev. Lett. 1980, 45, 712–716. [Google Scholar] [CrossRef]
- Rosenbluth, M.N.; Rosenbluth, A.W. Monte Carlo Calculation of the Average Extension of Molecular Chains. J. Chem. Phys. 1955, 23, 356–359. [Google Scholar] [CrossRef]
- Grassberger, P. Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1,000,000. Phys. Rev. E 1997, 56, 3682–3693. [Google Scholar] [CrossRef]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: London, UK, 1996. [Google Scholar]
Real | ens. Mean | ens | |
---|---|---|---|
Real | Mean | ||
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagnoli, F.; Baia, M. Synchronization, Control and Data Assimilation of the Lorenz System. Algorithms 2023, 16, 213. https://doi.org/10.3390/a16040213
Bagnoli F, Baia M. Synchronization, Control and Data Assimilation of the Lorenz System. Algorithms. 2023; 16(4):213. https://doi.org/10.3390/a16040213
Chicago/Turabian StyleBagnoli, Franco, and Michele Baia. 2023. "Synchronization, Control and Data Assimilation of the Lorenz System" Algorithms 16, no. 4: 213. https://doi.org/10.3390/a16040213
APA StyleBagnoli, F., & Baia, M. (2023). Synchronization, Control and Data Assimilation of the Lorenz System. Algorithms, 16(4), 213. https://doi.org/10.3390/a16040213