Maximum Entropy Approach to Massive Graph Spectrum Learning with Applications
<p>(<b>a</b>) EGS semicircle fit for different moment number <span class="html-italic">m</span>. (<b>b</b>) KL divergence between semicircle density and EGS.</p> "> Figure 2
<p>(<b>a</b>) EGS fit to randomly generated Erdős-Rényi graph (<math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5000</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math>). The number of moments <span class="html-italic">m</span> used increases from 3 to 100 and the number of bins used for the eigenvalue histogram is <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math>. (<b>b</b>) EGS fit to randomly generated Barabási-Albert graph (<math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5000</mn> </mrow> </semantics></math>). The number of moments used for computing EGSs and the number of bins used for the eigenvalue histogram are <span class="html-italic">m</span> = 30, <math display="inline"><semantics> <msub> <mi>n</mi> <mi>b</mi> </msub> </semantics></math> = 50 (<b>Left</b>) and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math> (<b>Right</b>).</p> "> Figure 3
<p>Symmetric KL heatmap between 9 graphs from the SNAP dataset: (0) bio-human-gene1, (1) bio-human-gene2, (2) bio-mouse-gene, (3) ca-AstroPh, (4) ca-CondMat, (5) ca-GrQc, (6) ca-HepPh, (7) ca-HepTh, (8) roadNet-CA, (9) roadNet-PA, (10) roadNet-TX.</p> "> Figure 4
<p>Log error of cluster number detection using EGS and Lanczos methods on large synthetic networks with (<b>a</b>) 201,600 nodes and 305 clusters and (<b>b</b>) 404,420 nodes and 1355 clusters, and on small-scale real-world networks (<b>c</b>) Email network of 1003 nodes and (<b>d</b>) NetScience network of 1589 nodes.</p> "> Figure 5
<p>Eigenvalues of the Email dataset with clear spectral gap and <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mo>*</mo> </msub> <mo>≈</mo> <mn>0.005</mn> </mrow> </semantics></math>. The shaded area multiplied by the number of nodes <span class="html-italic">n</span> predicts the number of clusters.</p> "> Figure 6
<p>Spectral density of three large-scale real-world networks estimated by EGS and Lanczos. (<b>a</b>) DBLP dataset, (<b>b</b>) Amazon dataset, (<b>c</b>) YouTube dataset.</p> ">
Abstract
:1. Introduction
- We prove that kernel smoothing, commonly used in methods to visualise and compare graph spectral densities, biases moment information;
- We propose a computationally efficient and information-theoretically optimal smooth spectral density approximation based on the method of maximum entropy, which fully respects the moment information. It further admits analytic forms for symmetric and non-symmetric Kullback–Leibler (KL) divergences and Shannon entropy;
- We utilise our information-theoretic spectral density approximation on two example applications. We investigate graph similarity and to learn the number of clusters in a graph, outperforming iterative smoothed spectral approaches on both synthetic and real-world data sets.
2. Graphs and Graph Spectrum
3. Motivation for a New Method to Approximate and Compare Graph Spectra
The Argument against Kernel Smoothing
4. An Information-Theoretically Optimal Approach to Estimating Massive Graph Spectrum
4.1. Stochastic Trace Estimation
Algorithm 1: Learning the Graph Laplacian Moments via Stochastic Trace Estimation (STE). |
|
Comment on the Lanczos Algorithm
4.2. Maximum Entropy
4.3. The Entropic Graph Spectral Learning Algorithm
Algorithm 2: Entropic Graph Spectrum (EGS) Learning. |
|
5. Further Remarks
5.1. Analytic Forms for the Differential Entropy and Divergence from EGS
5.2. On the Importance of Moments
5.2.1. ESD Moments Converge to Those of the LSD
5.2.2. Finite Size Corrections to Moments Get Worse with Larger Moments
6. Visualising the Modelling Power of EGS
6.1. Erdős-Rényi Graphs and the Semicircle Law
6.2. Beyond the Semicircle Law
7. EGS for Measuring Graph Similarity
7.1. Inferring Parameters of Random Graph Models
7.2. Learning Real-World Network Types
7.3. Comparing Different Real-World Networks
8. EGS for Estimating Cluster Number
Algorithm 3: Cluster Number Estimation. |
|
8.1. Synthetic Networks
8.2. Small Real-World Networks
8.3. Large Real-World Networks
9. Experimental Details
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mislove, A.; Marcon, M.; Gummadi, K.P.; Druschel, P.; Bhattacharjee, B. Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, San Diego, CA, USA, 24–26 October 2007; pp. 29–42. [Google Scholar]
- Flake, G.W.; Lawrence, S.; Giles, C.L. Efficient identification of web communities. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, USA, 20–23 August 2000; pp. 150–160. [Google Scholar]
- Leskovec, J.; Adamic, L.A.; Huberman, B.A. The dynamics of viral marketing. ACM Trans. Web 2007, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, I.J.; Derényi, I.; Barabási, A.L.; Vicsek, T. Spectra of “real-world” graphs: Beyond the semicircle law. Phys. Rev. E 2001, 64, 026704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Steiner, D.; Kong, W.; Sohler, C.; Valiant, G. Approximating the Spectrum of a Graph. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1263–1271. [Google Scholar]
- Lovász, L. Eigenvalues of Graphs. 2007. Available online: https://web.cs.elte.hu/~lovasz/eigenvals-x.pdf (accessed on 13 June 2022).
- Chung, F.R. Spectral Graph Theory; Number 92; American Mathematical Soc.: Providence, RI, USA, 1997. [Google Scholar]
- Newman, M.E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Kolla, A.; Koutis, I.; Madan, V.; Sinop, A.K. Spectrally Robust Graph Isomorphism. arXiv 2018, arXiv:1805.00181. [Google Scholar]
- Takahashi, D.Y.; Sato, J.R.; Ferreira, C.E.; Fujita, A. Discriminating different classes of biological networks by analyzing the graphs spectra distribution. PLoS ONE 2012, 7, e49949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineau, E. Using Laplacian Spectrum as Graph Feature Representation. arXiv 2019, arXiv:1912.00735. [Google Scholar]
- Biggs, N.; Lloyd, E.; Wilson, R. Graph Theory 1736-1936; Oxford University Press: Oxford, UK, 1976. [Google Scholar]
- Granziol, D.; Ru, B.; Zohren, S.; Dong, X.; Osborne, M.; Roberts, S. MEMe: An Accurate Maximum Entropy Method for Efficient Approximations in Large-Scale Machine Learning. Entropy 2019, 21, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Saad, Y.; Yang, C. Approximating spectral densities of large matrices. SIAM Rev. 2016, 58, 34–65. [Google Scholar] [CrossRef]
- Ubaru, S.; Chen, J.; Saad, Y. Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature. SIAM J. Matrix Anal. Appl. 2017, 38, 1075–1099. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Amari, S.I.; Nagaoka, H. Methods of Information Geometry; American Mathematical Soc.: Providence, RI, USA, 2007; Volume 191. [Google Scholar]
- Banerjee, A. The Spectrum of the Graph Laplacian as a Tool for Analyzing Structure and Evolution of Networks. Ph.D. Thesis, Leipzig University, Leipzig, Germany, 2008. [Google Scholar]
- Fitzsimons, J.; Granziol, D.; Cutajar, K.; Osborne, M.; Filippone, M.; Roberts, S. Entropic Trace Estimates for Log Determinants. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia, 18–22 September 2017; pp. 323–338. [Google Scholar]
- Golub, G.H.; Meurant, G. Matrices, moments and quadrature. In Numerical Analysis 1993; CRC Press: Boca Raton, FL, USA, 1994; Volume 52. [Google Scholar]
- Akemann, G.; Baik, J.; Di Francesco, P. The Oxford Handbook of Random Matrix Theory; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Feier, A.R. Methods of Proof in Random Matrix Theory. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2012. [Google Scholar]
- Füredi, Z.; Komlós, J. The eigenvalues of random symmetric matrices. Combinatorica 1981, 1, 233–241. [Google Scholar] [CrossRef]
- Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection. 2014. Available online: http://snap.stanford.edu/data (accessed on 13 June 2022).
- Newman, M.E. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 2006, 74, 036104. [Google Scholar] [CrossRef] [Green Version]
n | 50 | 100 | 150 |
---|---|---|---|
ER () | |||
WS () | |||
BA () |
Large BA | YouTube | |
---|---|---|
ER | ||
WS | ||
BA |
9 | 30 | 90 | 240 | |
---|---|---|---|---|
Lanc | ||||
EGS |
Moments | 40 | 70 | 100 |
---|---|---|---|
DBLP | |||
Amazon | |||
Youtube |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granziol, D.; Ru, B.; Dong, X.; Zohren, S.; Osborne, M.; Roberts, S. Maximum Entropy Approach to Massive Graph Spectrum Learning with Applications. Algorithms 2022, 15, 209. https://doi.org/10.3390/a15060209
Granziol D, Ru B, Dong X, Zohren S, Osborne M, Roberts S. Maximum Entropy Approach to Massive Graph Spectrum Learning with Applications. Algorithms. 2022; 15(6):209. https://doi.org/10.3390/a15060209
Chicago/Turabian StyleGranziol, Diego, Binxin Ru, Xiaowen Dong, Stefan Zohren, Michael Osborne, and Stephen Roberts. 2022. "Maximum Entropy Approach to Massive Graph Spectrum Learning with Applications" Algorithms 15, no. 6: 209. https://doi.org/10.3390/a15060209