[go: up one dir, main page]

Skip to main content
Log in

Cauchy problems for some classes of linear fractional differential equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Cauchy problems for a class of linear differential equations with constant coefficients and Riemann-Liouville derivatives of real orders, are analyzed and solved in cases when some of the real orders are irrational numbers and when all real orders appearing in the derivatives are rational numbers. Our analysis is motivated by a forced linear oscillator with fractional damping. We pay special attention to the case when the leading term is an integer order derivative. A new form of solution, in terms of Wright’s function for the case of equations of rational order, is presented. An example is treated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Atanackovic, Lj. Oparnica, S. Pilipovic, Distributional framework for solving fractional differential equations. Integral Transforms Spec. Funct. 20 (2009), 215–222.

    Article  MathSciNet  Google Scholar 

  2. A. Al-Rabath, V.S. Erturk, S. Momani, Solutions of a fractional oscillator by using differential transform method. Computers and Mathematics with Applications 59 (2010), 833–842.

    Google Scholar 

  3. W. Arendt, C.J.K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel, 2001.

    Book  MATH  Google Scholar 

  4. B.S. Baclic, T.M. Atanackovic, Stability and creep of a fractional order viscoelastic rod. Bull. de l’Académie Serbe des Sciences et des Arts, Classe des Sciences mathématiques et naturelles 25 (2000), 115–131.

    MathSciNet  Google Scholar 

  5. E. Bazhlekova, Properties of the fundamental and the impulse-response solutions of multi-term fractional differential equations. Complex Analysis and Applications’ 13, Proc. of Intern. Conference, Sofia, 31 Oct.–2 Nov. 2013 (2013), 55–64; http://www.math.bas.bg/complan/caa13/.

    Google Scholar 

  6. B. Bonilla, M. Rivero, J.J. Truillo, On a system of linear fractional differential equations with constant coefficients. Applied Mathematics and Computation 187 (2007), 68–78.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Diethelm, N.J. Ford, Multi-order fractional differential equations and their numerical solution. Applied Mathematics and Computation 154 (2004), 621–640.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Diethelm, Smoothness properties of solutions of Caputo-type fractional differential equations. Fract. Calc. Appl. Anal. 10 (2007), 151–160; at http://www.math.bas.bg/~fcaa.

    MATH  MathSciNet  Google Scholar 

  9. K. Diethelm, The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics # 2004, Springer, Berlin, 2010.

    MATH  Google Scholar 

  10. G. Doetsch, Handbuch der Lalace-Transformation, I. Birkhäuser-Verlag, Basel, 1950.

    Book  Google Scholar 

  11. A. Ghorbani, Toward a new analytical method for solving nonlinear fractional differential equations. Comput. Methods Appl. Mech. Engrg. 97 (2008), 4173–4179.

    Article  MathSciNet  Google Scholar 

  12. S.B. Hadid, Y.F. Luchko, An opperational method for solving fractional differential equations of an arbitrary real order. PanAmer. Math. J. 6 (1996), 57–73.

    MATH  MathSciNet  Google Scholar 

  13. A.A. Kilbas, H.M. Srivastava, J.T. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.

    MATH  Google Scholar 

  14. V. Kiryakova, Transmutation method for solving hyper-Bessel differential equations based on the Poisson-Dimovski transformation. Frac. Calc Appl. Anal. 11 (2008), 299–316; http://www.math.bas.bg/~fcaa.

    MATH  MathSciNet  Google Scholar 

  15. H. Komatsu, Laplace transforms of hyperfunctions — A new fondation of the Heaviside calculus. J. Fac. Eci. Univ. Tokyo Sec. IA 34 (1987), 805–820.

    MATH  MathSciNet  Google Scholar 

  16. Z. Li, M. Yamamoto, Initial-boundary value problems for linear diffusion equation with multiple time-fractional derivatives. http://arxiv.org/abs/1306.2778.

  17. Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24 (1999), 207–233.

    MATH  MathSciNet  Google Scholar 

  18. Y. Luchko, H. M. Srivastava, The exact solution of certain differential equations of fractional order by using operational calculus. Computers Math. Applic. 29 (1995), 73–85.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Mikusiński, Operational Calculus, Vol. I and Vol. II (with T. K. Boehme). Pergamon Press, Oxford, 1987.

    MATH  Google Scholar 

  20. A. Pálfalvi, Efficient solution of a vibration equation involiving fractional derivatives. Intern. Journal Non-Linear Mechanics 45 (2010), 169–175.

    Article  Google Scholar 

  21. A. Pedas, E. Tamme, Spline collocation methods for linear multi-term fractional differential equations. J. of Computational and Applied Mathematics 236 (2011), 167–176.

    Article  MATH  MathSciNet  Google Scholar 

  22. I. Podlubny, Fractional Differential Equations. Academic Press, New York, 1999.

    MATH  Google Scholar 

  23. A.V. Pshu, Partial Differential Equations with Fractional Derivatives. Nauka, Moscow, 2005 (in Russian).

    Google Scholar 

  24. M. Rivero, L. Rodríguez-Germá, J.J. Trujillo, Linear fractional differential equations with variable coefficients. Applied Mathematics Letters 21 (2008), 892–897.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Stanković, Sur une classe d’équations intégrales singuliéres. Recueil des travaux de l’Académie Serbe des Sciences XLIII, No 4 (1955), 81–130.

    Google Scholar 

  26. V.S. Vladimirov, Generalized Functions in Mathematical Physics. Mir Publishers, Moscow, 1979.

    Google Scholar 

  27. Z.H. Wang, X. Wang, General solution of the Bagley-Torvik equation with fractional-order derivatives. Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1279–1285.

    Article  MATH  Google Scholar 

  28. E.M. Wright, On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 8 (1953), 71–79.

    Google Scholar 

  29. E.M. Wright, The generalized Bessel function of order qreater then one. Quart. J. Math. Oxford Ser. 2 (1940), 36–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Atanackovic.

Additional information

Dedicated to the 80th anniversary of our friend Professor Ivan Dimovski

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanackovic, T., Dolicanin, D., Pilipovic, S. et al. Cauchy problems for some classes of linear fractional differential equations. Fract Calc Appl Anal 17, 1039–1059 (2014). https://doi.org/10.2478/s13540-014-0213-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0213-1

MSC 2010

Key Words and Phrases

Navigation