[go: up one dir, main page]

Skip to main content
Log in

Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The introduction of proportional-integral-derivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to better manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • CAN Newsletter Online, 2014. Emergency Steering Assist. http://can-newsletter.org/engineering/engineering-miscel laneous/140813_emergency-steering-assist

  • Chen, L.W., Chou, P.C., 2013. A lane-level cooperative collision avoidance system based on vehicular sensor networks. 19th Annual Int. Conf. on Mobile Computing & Networking, p.131–134. https://doi.org/10.1145/2500423.2505293

    Google Scholar 

  • Cho, H., Kim, B., 2014. Cooperative intersection collisionwarning system based on vehicle-to-vehicle communication. Contemp. Eng. Sci., 7(22):1147–1154. https://doi.org/10.12988/ces.2014.49143

    Article  Google Scholar 

  • Feng, Y.Q., Ji, H.Q., Liu, Z.S., 2012. Parameter setting and simulation of the PID controller for vehicle spacing control system. China Sci. Technol. Inform., 2012(8):141–143 (in Chinese).

    Google Scholar 

  • Huang, C.M., Lin, S.Y., 2014. Cooperative vehicle collision warning system using the vector-based approach with dedicated short range communication data transmission. IET Intell. Transp. Syst., 8(2):124–134. https://doi.org/10.1049/iet-its.2012.0101

    Article  Google Scholar 

  • Jin, C., Wang, J., Ma, J., et al., 2010. Application of improved PSO for parameter tuning of PID controller. J. Electron. Meas. Instrum., 24(2):141–146. https://doi.org/10.3724/SP.J.1187.2010.00141

    Article  Google Scholar 

  • Khan, H., Iqbal, J., Baizid, K., et al., 2015. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking. Front. Inform. Technol. Electron. Eng., 16(2):166–172. https://doi.org/10.1631/FITEE.1400183

    Article  Google Scholar 

  • Kim, K.I., Guan, H., Wang, B., et al., 2016. Active steering control strategy for articulated vehicles. Front. Inform. Technol. Electron. Eng., 17(6):576–586. https://doi.org/10.1631/FITEE.1500211

    Article  Google Scholar 

  • Konstantinidis, E.I., Patoulidis, G.I., Vandikas, I.N., et al., 2010. Development of a collaborative vehicle collision avoidance system. IEEE Intelligent Vehicles Symp., p.1066–1071. https://doi.org/10.1109/IVS.2010.5548022

    Google Scholar 

  • Kreuzen, C., 2012. Cooperative Adaptive cruise control using information from multiple predecessors in combination with MPC. MS Thesis, Delft University of Technology, Delft, the Netherlands.

    Google Scholar 

  • Lee, D.H., Bai, S.N., Kim, T.W., et al., 2010. Enhanced selective forwarding scheme for alert message propagation in VANETs. Int. Conf. on Information Science and Applications, p.1–9. https://doi.org/10.1109/ICISA.2010.5480516

    Google Scholar 

  • Mirfakhraie, T., He, Y., Liscano, R., 2014. Wireless networked control for active trailer steering systems of articulated vehicles. ASME Int. Mechanical Engineering Congress and Exposition, Volume 12: Transportation Systems, p.V012T15A003. https://doi.org/10.1115/IMECE2014-36440

    Google Scholar 

  • Ong, H.Y., Gerdes, J.C., 2015. Cooperative collision avoidance via proximal message passing. American Control Conf., p.4124–4130. https://doi.org/10.1109/ACC.2015.7171976

    Google Scholar 

  • Seo, H.S., Jung, J.S., Lee, S.S., 2014. Network performance analysis and manuever model for overtaking assistant service using wave. Int. J. Autom. Technol., 15(1):57–64. https://doi.org/10.1007/s12239-014-0006-x

    Article  Google Scholar 

  • Shi, Y., Eberhart, R., 1998. A modified particle swarm optimizer. IEEE Int. Conf. on Evolutionary Computation, p.69–73. https://doi.org/10.1109/ICEC.1998.699146

    Google Scholar 

  • Shi, Y., Eberhart, R.C., 2001. Fuzzy adaptive particle swarm optimization. Congress on Evolutionary Computation, p.101–106. https://doi.org/10.1109/CEC.2001.934377

    Google Scholar 

  • Solyom, S., Bengtsson, M., 2012. Collision Avoidance System in a Vehicle. US Patent 8 200 420.

    Google Scholar 

  • Tan, H.S., Huang, J., 2006. DGPS-based vehicle-to-vehicle cooperative collision warning: engineering feasibility viewpoints. IEEE Trans. Intell. Transp. Syst., 7(4):415–428. https://doi.org/10.1109/TITS.2006.883938

    Article  Google Scholar 

  • Wang, Q., Phillips, C., 2013. Cooperative collision avoidance for multi-vehicle systems using reinforcement learning. 18th Int. Conf. on Methods & Models in Automation & Robotics, p.98–102. https://doi.org/10.1109/MMAR.2013.6669888

    Google Scholar 

  • Wang, Q., Zhu, S., He, Y., 2015. Model reference adaptive control for active trailer steering of articulated heavy vehicles. SAE Technical Papers, 2015-01-1495. https://doi.org/10.4271/2015-01-1495

    Google Scholar 

  • Wang, Q.G., Zou, B., Lee, T.H., et al., 1997. Auto-tuning of multivariable PID controllers from decentralized relay feedback. Automatica, 33(3):319–330. https://doi.org/10.1016/S0005-1098(96)00177-X

    Article  MathSciNet  Google Scholar 

  • Wu, Y.H., Lu, Y.P., 2009. Main factors and evaluation methods of driving comfort. Heilongjiang Jiaotong Keji, 2009(8): 197–198 (in Chinese). https://doi.org/10.16402/j.cnki.issn1008-3383.2009.08. 107

    Google Scholar 

  • Yan, G., Yang, W., Weigle, M.C., et al., 2010. Cooperative collision warning through mobility and probability prediction. IEEE Intelligent Vehicles Symp., p.1172–1177. https://doi.org/10.1109/IVS.2010.5547990

    Google Scholar 

  • Yu, C.B., Wang, Y.Q., Shao, J.L., 2016. Optimization of formation for multi-agent systems based on LQR. Front. Inform. Technol. Electron. Eng., 17(2):96–109. https://doi.org/10.1631/FITEE.1500490

    Article  Google Scholar 

  • Zardosht, B., Beauchemin, S., Bauer, M.A., 2013. A decision making module for cooperative collision warning systems using vehicular ad-hoc networks. 16th Int. IEEE Conf. on Intelligent Transportation Systems, p.1743–1749. https://doi.org/10.1109/ITSC.2013.6728481

    Google Scholar 

  • Zhang, H.T., Hu, H.L., Wang, B., 2008. A modified PSO algorithm and its application in tuning of PID. Techn. Autom. Appl., 27(12):14–16. https://doi.org/10.3969/j.issn.1003-7241.2008.12.004

    Google Scholar 

  • Zhang, J.M., Li, Q., Cheng N., et al., 2013. Nonlinear path-following method for fixed-wing unmanned aerial vehicles. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(2):125–132. https://doi.org/10.1631/jzus.C1200195

    Article  Google Scholar 

  • Zhang, M.H., Duan, D.P., Chen, L., 2012. Turning mechanism and composite control of stratospheric airships. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(11): 859–865. https://doi.org/10.1631/jzus.C1200084

    Article  Google Scholar 

  • Zhu, X., Liu, Z., Li, L., 2015. Evasive manoeuvre for emergency steering based on typical vehicle-pedestrian use case. J. Autom. Safety Energy, 6(3):217–223 (in Chinese). https://doi.org/10.3969/j.issn.1674-8484.2015.03.003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-hui Sun.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61300145)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Xc., Qin, Gh., Sun, Mh. et al. Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems. Frontiers Inf Technol Electronic Eng 18, 1385–1395 (2017). https://doi.org/10.1631/FITEE.1601427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601427

Key words

CLC number

Navigation