[go: up one dir, main page]

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Discrete Mathematics and Its Applications
Time-Optimal Gathering Algorithm of Mobile Robots with Local Weak Multiplicity Detection in Rings
Tomoko IZUMITaisuke IZUMISayaka KAMEIFukuhito OOSHITA
Author information
JOURNAL RESTRICTED ACCESS

2013 Volume E96.A Issue 6 Pages 1072-1080

Details
Abstract

The gathering problem of anonymous and oblivious mobile robots is one of the fundamental problems in the theoretical mobile robotics. We consider the gathering problem in unoriented and anonymous rings, which requires that all robots eventually keep their positions at a common non-predefined node. Since the gathering problem cannot be solved without any additional capability to robots, all the previous results assume some capability of robots, such as the agreement of local view. In this paper, we focus on the multiplicity detection capability. This paper presents a deterministic gathering algorithm with local-weak multiplicity detection, which provides a robot with information about whether its current node has more than one robot or not. This assumption is strictly weaker than that in previous works. Our algorithm achieves the gathering from an aperiodic and asymmetric configuration with 2<k<n/2 robots, where n is the number of nodes. We also show that our algorithm is asymptotically time-optimal one, i.e., the time complexity of our algorithm is O(n). Interestingly, despite the weaker assumption, it achieves significant improvement compared to the previous algorithm, which takes O(kn) time for k robots.

Content from these authors
© 2013 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top