[go: up one dir, main page]

Skip to main content
Log in

A review of graphene synthesis by indirect and direct deposition methods

  • 2D and Nanomaterials
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The unique properties of graphene have led to the use of this allotrope of carbon in a wide range of applications, including semiconductors, energy devices, diffusion barriers, heat spreaders, and protective overcoats. The synthesis of graphene by process methods that either directly or indirectly rely on physical vapor deposition, thermal annealing, laser irradiation, and ion/electron beam irradiation has drawn significant attention in recent years, mainly because they can provide high purity, low temperature, high throughput, and controllable growth of graphene on various substrates. This article provides a comprehensive assessment of these methods by grouping them into two main categories, i.e., indirect methods in which a carbon layer is first deposited on a substrate and then converted to graphene by some type of energetic post-treatment process and direct methods in which graphene is directly synthesized on a substrate surface by a process that uses a solid carbon source. The underlying growth mechanisms of these processes and the challenging issues that need to be overcome before further advances in graphene synthesis can occur are interpreted in the context of published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. W. Choi, I. Lahiri, R. Seelaboyina, and Y.S. Kang: Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 35, 52 (2010).

    Article  CAS  Google Scholar 

  2. R.S. Edwards and K.S. Coleman: Graphene synthesis: Relationship to applications. Nanoscale 5, 38 (2013).

    Article  CAS  Google Scholar 

  3. K.F. Mak, J. Shan, and T.F. Heinz: Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010).

    Article  CAS  Google Scholar 

  4. F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, and C.N. Lau: Phase-coherent transport in graphene quantum billiards. Science 317, 1530 (2007).

    Article  CAS  Google Scholar 

  5. S. Adam, E.H. Hwang, E. Rossi, and S. Das Sarma: Theory of charged impurity scattering in two dimensional graphene. Solid State Commun. 149, 1072 (2009).

    Article  CAS  Google Scholar 

  6. H.S. Skulason, P.E. Gaskell, and T. Szkopek: Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers. Nanotechnology 21, 295709 (2010).

    Article  CAS  Google Scholar 

  7. J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, and P.L. McEuen: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458 (2008).

    Article  CAS  Google Scholar 

  8. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  9. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008).

    Article  CAS  Google Scholar 

  10. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen: Room-temperature ferromagnetism of graphene. Nano Lett. 9, 220 (2009).

    Article  CAS  Google Scholar 

  11. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010).

    Article  CAS  Google Scholar 

  12. C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  13. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).

    Article  CAS  Google Scholar 

  14. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  15. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff: Graphene-based ultracapacitors. Nano Lett. 8, 3498 (2008).

    Article  CAS  Google Scholar 

  16. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007).

    Article  CAS  Google Scholar 

  17. L. Liu, S. Ryu, M.R. Tomasik, E. Stolyarova, N. Jung, M.S. Hybertsen, M.L. Steigerwald, L.E. Brus, and G.W. Flynn: Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965 (2008).

    Article  CAS  Google Scholar 

  18. V. Berry: Impermeability of graphene and its applications. Carbon 62, 1 (2013).

    Article  CAS  Google Scholar 

  19. W. Yuan, J. Chen, and G. Shi: Nanoporous graphene materials. Mater. Today 17, 77 (2014).

    Article  CAS  Google Scholar 

  20. B. Lang: A LEED study of the deposition of carbon on platinum crystal surfaces. Surf. Sci. 53, 317 (1975).

    Article  CAS  Google Scholar 

  21. E. Rokuta, Y. Hasegawa, A. Itoh, K. Yamashita, T. Tanaka, S. Otani, and C. Oshima: Vibrational spectra of the monolayer films of hexagonal boron nitride and graphite on faceted Ni(755). Surf. Sci. 427–428, 97 (1999).

    Article  Google Scholar 

  22. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  23. H. Shioyama: Cleavage of graphite to graphene. J. Mater. Sci. Lett. 20, 499 (2001).

    Article  CAS  Google Scholar 

  24. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).

    Article  CAS  Google Scholar 

  25. T. Moldt, A. Eckmann, P. Klar, S.V. Morozov, A.A. Zhukov, K.S. Novoselov, and C. Casiraghi: High-yield production and transfer of graphene flakes obtained by anodic bonding. ACS Nano 5, 7700 (2011).

    Article  CAS  Google Scholar 

  26. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  27. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y. Gun’ko, J. Boland, P. Niraj, G. Deusberg, S. Krishnamurti, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman: High yield production of graphene by liquid phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).

    Article  CAS  Google Scholar 

  28. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).

    Article  CAS  Google Scholar 

  29. Y.Q. Wu, P.D. Ye, M.A. Capano, Y. Xuan, Y. Sui, M. Qi, J.A. Cooper, T. Shen, D. Pandey, G. Prakash, and R. Reifenberger: Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett. 92, 092102 (2008).

    Article  CAS  Google Scholar 

  30. M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, F.A. Bipasha, and S.S. Hossain: Synthesis of graphene. Int. Nano Lett. 6, 65 (2016).

    Article  CAS  Google Scholar 

  31. R. Vishwakarma, M.S. Rosmi, K. Takahashi, Y. Wakamatsu, Y. Yaakob, M.I. Araby, G. Kalita, M. Kitazawa, and M. Tanemura: Transfer free graphene growth on SiO2 substrate at 250 °C. Sci. Rep. 7, 43756 (2017).

    Article  Google Scholar 

  32. M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y-L. Chueh, Y. Zhang, R. Maboudian, and A. Javey: Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 96, 063110 (2010).

    Article  CAS  Google Scholar 

  33. J. Peng, N. Chen, R. He, Z. Wang, S. Dai, and X. Jin: Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method. Angew. Chem. 129, 1777 (2017).

    Article  Google Scholar 

  34. J.A. Rodríguez-Manzo, C. Pham-Huu, and F. Banhart: Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano 5, 1529 (2011).

    Article  CAS  Google Scholar 

  35. G.A.J. Amaratunga, M. Chhowalla, C.J. Kiely, I. Alexandrou, R. Aharonov, and R.M. Devenish: Hard elastic carbon thin films from linking of carbon nanoparticles. Nature 383, 321 (1996).

    Article  CAS  Google Scholar 

  36. U. Narula, C.M. Tan, and C.S. Lai: Growth mechanism for low temperature PVD graphene synthesis on copper using amorphous carbon. Sci. Rep. 7, 44112 (2017).

    Article  Google Scholar 

  37. H. Zhang and P.X. Feng: Fabrication and characterization of few-layer graphene. Carbon 48, 359 (2010).

    Article  CAS  Google Scholar 

  38. C. Maddi, F. Bourquard, V. Barnier, J. Avila, M-C. Asensio, T. Tite, C. Donnet, and F. Garrelie: Nano-architecture of nitrogen-doped graphene films synthesized from a solid CN source. Sci. Rep. 8, 3247 (2018).

    Article  CAS  Google Scholar 

  39. A.K. Kesarwani, O.S. Panwar, S.R. Dhakate, V.N. Singh, R.K. Rakshit, A. Bisht, and A. Kumar: Determining the number of layers in graphene films synthesized by filtered cathodic vacuum arc technique. Fuller. Nanotub. Car. Nanostruct. 24, 725 (2016).

    Article  CAS  Google Scholar 

  40. W. Xiong, Y.S. Zhou, L.J. Jiang, A. Sarkar, M. Mahjouri-Samani, Z.Q. Xie, Y. Gao, N.J. Ianno, L. Jiang, and Y.F. Lu: Single-step formation of graphene on dielectric surfaces. Adv. Mater. 25, 630 (2013).

    Article  CAS  Google Scholar 

  41. J. Wintterlin and M-L. Bocquet: Graphene on metal surfaces. Surf. Sci. 603, 1841 (2009).

    Article  CAS  Google Scholar 

  42. C. Oshima and A. Nagashima: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys.: Condens. Matter 9, 1 (1997).

    CAS  Google Scholar 

  43. A. Cabrero-Vilatela, R.S. Weatherup, P. Braeuninger-Weimer, S. Caneva, and S. Hofmann: Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale 8, 2149 (2016).

    Article  CAS  Google Scholar 

  44. A.T.T. Koh, Y.M. Foong, and D.H.C. Chua: Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition. Diam. Relat. Mater. 25, 98 (2012).

    Article  CAS  Google Scholar 

  45. J-i. Fujita, R. Ueki, Y. Miyazawa, and T. Ichihashi: Graphitization at interface between amorphous carbon and liquid gallium for fabricating large area graphene sheets. J. Vac. Sci. Technol. B 27, 3063 (2009).

    Article  CAS  Google Scholar 

  46. J.J. Schneider: Transforming amorphous into crystalline carbon: Observing how graphene grows. ChemCatChem 3, 1119 (2011).

    Article  CAS  Google Scholar 

  47. C. Mattevi, H. Kim, and M. Chhowalla: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324 (2011).

    Article  CAS  Google Scholar 

  48. H. Okamoto, M.E. Schlesinger, and E.M. Mueller (eds): ASM Handbook, Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, OH, 2016); pp. 110–131.

    Google Scholar 

  49. G.A. López and E.J. Mittemeijer: The solubility of C in solid Cu. Scr. Mater. 51, 1 (2004).

    Article  CAS  Google Scholar 

  50. L. Baraton, Z.B. He, C.S. Lee, C.S. Cojocaru, M. Châtelet, J-L. Maurice, Y.H. Lee, and D. Pribat: On the mechanisms of precipitation of graphene on nickel thin films. Europhys. Lett. 96, 46003 (2011).

    Article  CAS  Google Scholar 

  51. F.J. Derbyshire, A.E.B. Presland, and D.L. Trimm: Graphite formation by the dissolution-precipitation of carbon in cobalt, nickel and iron. Carbon 13, 111 (1975).

    Article  CAS  Google Scholar 

  52. H. Ji, Y. Hao, Y. Ren, M. Charlton, W.H. Lee, Q. Wu, H. Li, Y. Zhu, Y. Wu, R. Piner, and R.S. Ruoff: Graphene growth using a solid carbon feedstock and hydrogen. ACS Nano 5, 7656 (2011).

    Article  CAS  Google Scholar 

  53. R. Sinclair, T. Itoh, and R. Chin: In situ TEM studies of metal–carbon reactions. Microsc. Microanal. 8, 288 (2002).

    Article  CAS  Google Scholar 

  54. R. Kikowatz, K. Flad, and G. Hörz: Effects of carbon and sulfur on the decomposition of hydrocarbons on nickel. J. Vac. Sci. Technol. A 5, 1009 (1987).

    Article  CAS  Google Scholar 

  55. W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee: Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49, 4122 (2011).

    Article  CAS  Google Scholar 

  56. X. Liu, L. Fu, N. Liu, T. Gao, Y. Zhang, L. Liao, and Z. Liu: Segregation growth of graphene on Cu–Ni alloy for precise layer control. J. Phys. Chem. C 115, 11976 (2011).

    Article  CAS  Google Scholar 

  57. X. Chen, L. Zhang, and S. Chen: Large area CVD growth of graphene. Synth. Met. 210, 95 (2015).

    Article  CAS  Google Scholar 

  58. H. Sojoudi and S. Graham: Transfer-free selective area synthesis of graphene using solid-state self-segregation of carbon in Cu/Ni bilayers. ECS J. Solid State Sci. Technol. 2, M17 (2013).

    Article  CAS  Google Scholar 

  59. K.L. Saenger, J.C. Tsang, A.A. Bol, J.O. Chu, A. Grill, and C. Lavoie: In situ x-ray diffraction study of graphitic carbon formed during heating and cooling of amorphous-C/Ni bilayers. Appl. Phys. Lett. 96, 153105 (2010).

    Article  CAS  Google Scholar 

  60. E. Sutter, P. Albrecht, and P. Sutter: Graphene growth on polycrystalline Ru thin films. Appl. Phys. Lett. 95, 133109 (2009).

    Article  CAS  Google Scholar 

  61. W. Knaepen, S. Gaudet, C. Detavernier, R.L. Van Meirhaeghe, J.J. Sweet, and C. Lavoie: In situ x-ray diffraction study of metal induced crystallization of amorphous germanium. J. Appl. Phys. 105, 083532 (2009).

    Article  CAS  Google Scholar 

  62. K. Wang: Laser based fabrication of graphene. In Advances in Graphene Science (M. Aliofkhazraci (ed) IntechOpen, London, UK, 2013); ch. 4; pp. 77–95.

    Google Scholar 

  63. M.H. Ani, M.A. Kamarudin, A.H. Ramlan, E. Ismail, M.S. Sirat, M.A. Mohamed, and M.A. Azam: A critical review on the contributions of chemical and physical factors toward the nucleation and growth of large-area graphene. J. Mater. Sci. 53, 7095 (2018).

    Article  CAS  Google Scholar 

  64. A. Dahal and M. Batzill: Graphene–nickel interfaces: A review. Nanoscale 6, 2548 (2014).

    Article  CAS  Google Scholar 

  65. C. Gong, G. Lee, B. Shan, E.M. Vogel, R.M. Wallace, and K. Cho: First-principles study of metal–graphene interfaces. J. Appl. Phys. 108, 123711 (2010).

    Article  CAS  Google Scholar 

  66. G.H. Han, F. Günes, J.J. Bae, E.S. Kim, S.J. Chae, H-J. Shin, J-Y. Choi, D. Pribat, and Y.H. Lee: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144 (2011).

    Article  CAS  Google Scholar 

  67. S. Nie, J.M. Wofford, N.C. Bartelt, O.D. Dubon, and K.F. McCarty: Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 84, 155425 (2011).

    Article  CAS  Google Scholar 

  68. H. Kim, C. Mattevi, M.R. Calvo, J.C. Oberg, L. Artiglia, S. Agnoli, C.F. Hirjibehedin, M. Chhowalla, and E. Saiz: Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6, 3614 (2012).

    Article  CAS  Google Scholar 

  69. C-M. Seah, S-P. Chai, and A.R. Mohamed: Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70, 1 (2014).

    Article  CAS  Google Scholar 

  70. M. Losurdo, M.M. Giangregorio, P. Capezzuto, and G. Bruno: Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836 (2011).

    Article  CAS  Google Scholar 

  71. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, and S-S. Pei: Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008).

    Article  CAS  Google Scholar 

  72. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Benerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).

    Article  CAS  Google Scholar 

  73. A.A. Woodworth and C.D. Stinespring: Surface chemistry of Ni induced graphite formation on the 6H-SiC(0 0 0 1) surface and its implications for graphene synthesis. Carbon 48, 1999 (2010).

    Article  CAS  Google Scholar 

  74. O.S. Panwar, A.K. Kesarwani, S.R. Dhakate, and B.S. Satyanarayana: Graphene synthesized using filtered cathodic vacuum arc technique and its applications. Vacuum 153, 262 (2018).

    Article  CAS  Google Scholar 

  75. N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, Y. Zhang, and Z. Liu: Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 11, 297 (2011).

    Article  CAS  Google Scholar 

  76. Z-Y. Juang, C-Y. Wu, C-W. Lo, W-Y. Chen, C-F. Huang, J-C. Hwang, F-R. Chen, K-C. Leou, and C-H. Tsai: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47, 2026 (2009).

    Article  CAS  Google Scholar 

  77. J. Hofrichter, B.N. Szafranek, M. Otto, T.J. Echtermeyer, M. Baus, A. Majerus, V. Geringer, M. Ramsteiner, and H. Kurz: Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett. 10, 36 (2010).

    Article  CAS  Google Scholar 

  78. C. Li, D. Li, J. Yang, X. Zeng, and W. Yuan: Preparation of single- and few-layer graphene sheets using Co deposition on SiC substrate. J. Nanomater. 2011, 319624 (2011).

    Google Scholar 

  79. T. Yoneda, M. Shibuya, K. Mitsuhara, A. Visikovskiy, Y. Hoshino, and Y. Kido: Graphene on SiC(0001) and \({\rm{SiC}}\left( {000\bar 1} \right)\) surfaces grown via Ni-silicidation reactions. Surf. Sci. 604, 1509 (2010).

    Article  CAS  Google Scholar 

  80. S-M. Yoon, W.M. Choi, H. Baik, H-J. Shin, I. Song, M-S. Kwon, J.J. Bae, H. Kim, Y.H. Lee, and J-Y. Choi: Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6, 6803 (2012).

    Article  CAS  Google Scholar 

  81. J.H. Seo, H.W. Lee, J-K. Kim, D-G. Kim, J-W. Kang, M-S. Kang, and C.S. Kim: Few layer graphene synthesized by filtered vacuum arc system using solid carbon source. Curr. Appl. Phys. 12, S131 (2012).

    Article  Google Scholar 

  82. T. Tite, V. Barnier, C. Donnet, A-S. Loir, S. Reynaud, J-Y. Michalon, F. Vocanson, and F. Garrelie: Surface enhanced Raman spectroscopy platform based on graphene with one-year stability. Thin Solid Films 604, 74 (2016).

    Article  CAS  Google Scholar 

  83. A. Barreiro, F. Börrnert, S.M. Avdoshenko, B. Rellinghaus, G. Cuniberti, M.H. Rümmeli, and L.M.K. Vandersypen: Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing, Sci. Rep. 3, 1115 (2013).

    Article  CAS  Google Scholar 

  84. Z.H. Ni, H.M. Wang, Y. Ma, J. Kasim, Y.H. Wu, and Z.X. Shen: Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2, 1033 (2008).

    Article  CAS  Google Scholar 

  85. P. Kumar: Laser flash synthesis of graphene and its inorganic analogues: An innovative breakthrough with immense promise. RSC Adv. 3, 11987 (2013).

    Article  CAS  Google Scholar 

  86. Z. Yang and J. Hao: Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C 4, 8859 (2016).

    Article  CAS  Google Scholar 

  87. Y. Bleu, F. Bourquard, T. Tite, A-S. Loir, C. Maddi, C. Donnet, and F. Garrelie: Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD). Front. Chem. 6, 572 (2018).

    Article  CAS  Google Scholar 

  88. A.M. Abd Elhamid, A.M. Aboulfotouh, M.A. Hafez, and I.M. Azzouz: Room temperature graphene growth on complex metal matrix by PLD. Diam. Relat. Mater. 80, 162 (2017).

    Article  CAS  Google Scholar 

  89. V. Kaushik, H. Sharma, A.K. Shukla, and V.D. Vankar: Sharp folded graphene ribbons formed by CO2 laser ablation for electron field emission studies. Vacuum 110, 1 (2014).

    Article  CAS  Google Scholar 

  90. K. Koshida, K. Gumi, Y. Ohno, K. Maehashi, K. Inoue, and K. Matsumoto: Position-controlled direct graphene synthesis on silicon oxide surfaces using laser irradiation. Appl. Phys. Exp. 6, 105101 (2013).

    Article  CAS  Google Scholar 

  91. K. Wang, G. Tai, K.H. Wong, S.P. Lau, and W. Guo: Ni induced few-layer graphene growth at low temperature by pulsed laser deposition. AIP Adv. 1, 022141 (2011).

    Article  CAS  Google Scholar 

  92. I. Kumar and A. Khare: Multi- and few-layer graphene on insulating substrate via pulsed laser deposition technique. Appl. Surf. Sci. 317, 1004 (2014).

    Article  CAS  Google Scholar 

  93. M.G. Lemaitre, S. Tongay, X. Wang, D.K. Venkatachalam, J. Fridmann, B.P. Gila, A.F. Hebard, F. Ren, R.G. Elliman, and B.R. Appleton: Low-temperature, site selective graphitization of SiC via ion implantation and pulsed laser annealing. Appl. Phys. Lett. 100, 193105 (2012).

    Article  CAS  Google Scholar 

  94. S.S. Kim, S. Hishita, T.S. Cho, and J.H. Je: Graphitization of ultrathin amorphous carbon films on Si(001) by Ar+ ion irradiation at ambient temperature. J. Appl. Phys. 88, 55 (2000).

    Article  CAS  Google Scholar 

  95. S.S. Tinchev: Surface modification of diamond-like carbon films to graphene under low energy ion beam irradiation. Appl. Surf. Sci. 258, 2931 (2012).

    Article  CAS  Google Scholar 

  96. F. Börrnert, S.M. Avdoshenko, A. Bachmatiuk, I. Ibrahim, B. Büchner, G. Cuniberti, and M.H. Rümmeli: Amorphous carbon under 80 kV electron irradiation: A means to make or break graphene. Adv. Mater. 24, 5630 (2012).

    Article  CAS  Google Scholar 

  97. A. Yajima, S. Abe, T. Fuse, Y. Mera, K. Maeda, and K. Suzuki: Electron-irradiation-induced ordering in tetrahedral-amorphous carbon films. Mol. Cryst. Liq. Cryst. 388, 147 (2002).

    Article  CAS  Google Scholar 

  98. D. Ugarte: Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707 (1992).

    Article  CAS  Google Scholar 

  99. G.C. Loh and D. Baillargeat: Graphitization of amorphous carbon and its transformation pathways. J. Appl. Phys. 114, 033534 (2013).

    Article  CAS  Google Scholar 

  100. A. Onodera, Y. Irie, K. Higashi, J. Umemura, and T. Takenaka: Graphitization of amorphous carbon at high pressures to 15 GPa. J. Appl. Phys. 69, 2611 (1991).

    Article  CAS  Google Scholar 

  101. K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao: Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113, 4257 (2009).

    Article  CAS  Google Scholar 

  102. Z-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H-M. Cheng: Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411 (2009).

    Article  CAS  Google Scholar 

  103. Y. Chen, H. Zhao, L. Sheng, L. Yu, K. An, J. Xu, Y. Ando, and X. Zhao: Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2–inert gas mixtures. Chem. Phys. Lett. 538, 72 (2012).

    Article  CAS  Google Scholar 

  104. Y. Miyamoto, H. Zhang, and D. Tománek: Photoexfoliation of graphene from graphite: An ab initio study. Phys. Rev. Lett. 104, 208302 (2010).

    Article  CAS  Google Scholar 

  105. M. Qian, Y.S. Zhou, Y. Gao, J.B. Park, T. Feng, S.M. Huang, Z. Sun, L. Jiang, and Y.F. Lu: Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Appl. Phys. Lett. 98, 173108 (2011).

    Article  CAS  Google Scholar 

  106. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari: Production and processing of graphene and 2d crystals. Mater. Today 15, 564 (2012).

    Article  CAS  Google Scholar 

  107. S.R. Sarath Kumar and H.N. Alshareef: Ultraviolet laser deposition of graphene thin films without catalytic layers. Appl. Phys. Lett. 102, 012110 (2013).

    Article  CAS  Google Scholar 

  108. R.H. Benhagouga, S. Abdelli-Messaci, M. Abdesselam, V. Blondeau-Patissier, R. Yahiaoui, M. Siad, and A. Rahal: Temperature effect on hydrogenated amorphous carbon leading to hydrogenated graphene by pulsed laser deposition. Appl. Surf. Sci. 426, 874 (2017).

    Article  CAS  Google Scholar 

  109. A.T.T. Koh, Y.M. Foong, and D.H.C. Chua: Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. Appl. Phys. Lett. 97, 114102 (2010).

    Article  CAS  Google Scholar 

  110. S.Z. Mortazavi, P. Parvin, and A. Reyhani: Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen. Laser Phys. Lett. 9, 547 (2012).

    Article  CAS  Google Scholar 

  111. B.C. Banerjee and P.L. Walker, Jr.: Interaction of evaporated carbon films with nickel. J. Appl. Phys. 33, 229 (1962).

    Article  CAS  Google Scholar 

  112. H. Lux, M. Edling, P. Siemroth, and S. Schrader: Fast and cost-effective synthesis of high-quality graphene on copper foils using high-current arc evaporation. Materials 11, 804 (2018).

    Article  CAS  Google Scholar 

  113. D.T. Oldfield, D.G. McCulloch, C.P. Huynh, K. Sears, and S.C. Hawkins: Multilayered graphene films prepared at moderate temperatures using energetic physical vapour deposition. Carbon 94, 378 (2015).

    Article  CAS  Google Scholar 

  114. J. Azpeitia, G. Otero-Irurueta, I. Palacio, J.I. Martinez, N. Ruiz del Árbol, G. Santoro, A. Gutiérrez, L. Aballe, M. Foerster, M. Kalbac, V. Vales, F.J. Mompeán, M. García-Hernández, J.A. Martín-Gago, C. Munuera, and M.F. López: High-quality PVD graphene growth by fullerene decomposition on Cu foils. Carbon 119, 535 (2017).

    Article  CAS  Google Scholar 

  115. G. Zhao, D. Shao, C. Chen, and X. Wang: Synthesis of few-layered graphene by H2O2 plasma etching of graphite. Appl. Phys. Lett. 98, 183114 (2011).

    Article  CAS  Google Scholar 

  116. H. Tanaka, R. Arima, M. Fukumori, D. Tanaka, R. Negishi, Y. Kobayashi, S. Kasai, T.K. Yamada, and T. Ogawa: Method for controlling electrical properties of single-layer graphene nanoribbons via adsorbed planar molecular nanoparticles. Sci. Rep. 5, 12341 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Western Digital Technologies, Inc. The first author acknowledges the financial support provided by the China Scholarship Council in the form of a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos Komvopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, S. & Komvopoulos, K. A review of graphene synthesis by indirect and direct deposition methods. Journal of Materials Research 35, 76–89 (2020). https://doi.org/10.1557/jmr.2019.377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.377

Navigation