Abstract
A hypoeutectic CoCrFeNiNbχ system was synthesized to investigate the effect of Nb content on the thermal stability, mechanical properties, and corrosion behaviors. The hypoeutectic CoCrFeNiNbχ alloy, which contained the Laves phase, possessed two-phase eutectic structures. The elevated temperature may have an impact on the stability of the Laves phase. Nanoindentation measurements showed that the Laves phase is much harder than the FCC phase, which could be confirmed by the shallower maximum penetration depth in the typical P–h curve. Furthermore, the plasticity of the Laves phase was characterized by nanoindentation measurements. Compared with the FCC phase, the activation energy of dislocation nucleation in the Laves phase is much higher due to the large atomic size difference and the phase difference. Corrosion and passivation behaviors of CoCrFeNiNbχ were investigated in 3.5% NaCl solution. All the alloys exhibited spontaneous passivity and low current densities in 3.5% NaCl solution. Furthermore, the corrosion potential increased with the increasing Nb content, which indicated that the corrosion resistance enhanced with a higher Nb content.










Similar content being viewed by others
References
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Sun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 5, 299 (2004).
W.R. Zhang, P.K. Liaw, and Y. Zhang: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu: Effect of Nb addition on microstructure and mechanical properties of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).
Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, and C.W. Tsai: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlχCoCrFeNi (0 ≤ χ ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57 (2009).
M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).
Z. Tang, T. Yuan, C.W. Tsai, J.W. Jeh, C.D. Lundin, and P.K. Liaw: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247 (2015).
C.Y. Hsu, C.C. Juan, S.T. Chen, T.S. Sheu, J.W. Yeh, and S.K. Chen: Phase diagrams of high-entropy alloy system Al–Co–Cr–Fe–Mo–Ni. J. Miner. Met. Mater. Soc. 65, 1829 (2013).
C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun: Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465 (2004).
J.M. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu: Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMoχ alloys. J. Alloys Compd. 497, 52 (2010).
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).
L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw: Deviation from high-entropy configuration in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).
C-J. Tong, M-R. Chen, J-W. Yeh, S-J. Lin, S-K. Chen, T-T. Shun, and S-Y. Chang: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).
Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li: A promising new class of high temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).
H. Jiang, L. Jiang, D.X. Qiao, Y.P. Lu, T.M. Wang, Z.Q. Cao, and T.J. Li: Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol. 33, 712 (2017).
Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).
X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, and Y.H. Zha: Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 141, 59 (2017).
Y.P. Lu, H. Jiang, S. Guo, T.M. Wang, Z.Q. Cao, and T.J. Li: A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124 (2017).
Ł. Rogal, J. Morgiel, Z. Świątek, and F. Czerwiński: Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy. Mater. Sci. Eng., A 651, 590 (2016).
F. He, Z.J. Wang, X.L. Shang, C. Leng, J.J. Li, and J.C. Wang: Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 104, 259 (2016).
F. He, Z. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).
S.G. Ma and Y. Zhang: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).
A.A. El-Daly, W.M. Desoky, A.F. Saad, N.A. Mansor, E.H. Lotfy, H.M. Abd-Elmoniem, and H. Hashem: The effect of undercooling on the microstructure and tensile properties of hypoeutectic Sn–6.5Zn–x Cu Pb-free solders. Mater. Des. 80, 152 (2015).
X. Wang, M.Y. Nie, C.T. Wang, S.C. Wang, and N. Gao: Microhardness and corrosion properties of hypoeutectic Al–7Si alloy processed by high-pressure torsion. Mater. Des. 83, 193 (2015).
A.E. Ares, L.M. Gassa, C.E. Schvezov, and M.R. Rosenberger: Corrosion and wear resistance of hypoeutectic Zn–Al alloys as a functionof structural features. Mater. Chem. Phys. 136, 394 (2012).
W.R. Osório, L.C. Peixoto, M.V. Canté, and A. Garcia: Microstructure features affecting mechanical properties and corrosion behavior of a hypoeutectic Al–Ni alloy. Mater. Des. 31, 4485 (2010).
Y.X. Xu, J.T. Lu, X.W. Yang, J.B. Yan, and W.Y. Li: Effect and role of alloyed Nb on the air oxidation behavior of Ni–Cr–Fe alloys at 1000 °C. Corros. Sci. 127, 10 (2017).
K. Li, Y. Li, X. Huang, D. Gibson, Y. Zheng, J. Liu, L. Sun, and Y.Q. Fu: Surface microstructures and corrosion resistance of Ni–Ti–Nb shape memory thin films. Appl. Surf. Sci. 414, 63 (2017).
M.L. Lethabane, P.A. Olubambi, and H.K. Chikwanda: Corrosion behavior of sintered Ti–Ni–Cu–Nb in 0.9% NaCl environment. J. Mater. Res. Technol. 4, 367 (2015).
L.J. Zhang, P.F. Yu, M.D. Zhang, D.J. Liu, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu: Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys. Mater. Sci. Eng., A 707, 708 (2017).
W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
R. Qvarfort: Critical pitting temperature measurements of stainless steels with an improved electrochemical method. Corros. Sci. 29, 987 (1989).
P. Bommersbach, C. Alemany-Dumont, J.P. Millet, and B. Normand: Formation and behavior study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim. Acta 51, 1076 (2005).
A.I. Muñoz, J.G. Antón, J.L. Guiñón, and V.P. Herranz: Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniques. Corros. Sci. 49, 3200 (2007).
E.E. Ebenso: Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2-acetylphenothiazine. Mater. Chem. Phys. 79, 58 (2003).
Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw: Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 119, 33 (2017).
X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multicomponent alloys. Mater. Chem. Phys. 132, 233 (2012).
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
A. Takeuchi and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2006).
M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).
M.C. Troparevsky, J.R. Morris, M. Daene, Y. Wang, A.R. Lupini, and G.M. Stocks: Beyond atomic sizes and Hume-Rothery rules: Understanding and predicting high-entropy alloys. JOM 67, 2350 (2015).
Y. Dong, Y.P. Lu, L. Jiang, T.M. Wang, and T.J. Li: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 52, 105 (2014).
S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
M-H. Tsai, K-Y. Tsai, C-W. Tsai, C. Lee, C-C. Juan, and J-W. Yeh: Criterion for sigma phase formation in Cr- and V containing high-entropy alloys. Mater. Res. Lett. 1, 207 (2013).
D. Catoor, Y.F. Gao, J. Geng, M.J.N.V. Prasad, E.G. Herbert, K.S. Kumar, G.M. Pharr, and E.P. George: Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Mater. 61, 2953 (2013).
L. Wang, H. Bei, T.L. Li, Y.F. Gao, E.P. George, and T.G. Nieh: Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals. Scr. Mater. 65, 179 (2011).
Y.X. Ye, Z.P. Lu, and T.G. Nieh: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130, 64 (2017).
O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 51 (2013).
N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).
T.T. Shun, L.Y. Chang, and M.H. Shiu: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater. Sci. Eng., A 556, 170 (2012).
ACKNOWLEDGMENTS
G. Li acknowledges the Basic Research Project in the Hebei Province (Grant No. A2016203382) and the National Science Foundation of China (Grant No. 11674274).
Author information
Authors and Affiliations
Corresponding author
Additional information
This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.
Rights and permissions
About this article
Cite this article
Zhang, M., Zhang, L., Liaw, P.K. et al. Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbχ high-entropy alloys. Journal of Materials Research 33, 3276–3286 (2018). https://doi.org/10.1557/jmr.2018.103
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2018.103