[go: up one dir, main page]

Skip to main content
Log in

Humid-Air and Aqueous Corrosion Models for Corrosion-Allowance Barrier Material

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Humid-air and aqueous general and pitting corrosion models (including their uncertainties) for the carbon steel outer containment barrier were developed using the corrosion data from literature for a suite of cast irons and carbon steels which have similar corrosion behaviors to the outer barrier material. The corrosion data include the potential effects of various chemical species present in the testing environments. The atmospheric corrosion data also embed any effects of cyclic wetting and drying and salts that may form on the corroding specimen surface. The humid-air and aqueous general corrosion models are consistent in that the predicted humid-air general corrosion rates at relative humidities between 85 and 100% RH are close to the predicted aqueous general corrosion rates. Using the expected values of the model parameters, the model predicts that aqueous pitting corrosion is the most likely failure mode for the carbon steel outer barrier, and an earliest failure (or initial pit penetration) of the 100-mm thick barrier may occur as early as about 500 years if it is exposed continuously to an aqueous condition at between 60 and 70°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CRWMS M&O, Total System Performance Assessment-1995: An Evaluation of the Potential Yucca Mountain Repository, B00000000-01717-2200-00136, Rev. 01, Nov. 1995.

    Google Scholar 

  2. F. H. Haynie, and J. B. Upham, Mat. Pro. Perf., 10, p. 18 (Nov. 1971).

    CAS  Google Scholar 

  3. D. Knotkova, P. Holler, and J. Vickova, in Procd, of the 8th Int’l Congr. on Metallic Corrosion, Sept. 6–11, Mainz, FRG, Vol. 1, p. 859 (1981).

    CAS  Google Scholar 

  4. D. Knotkova-Cermakova, J. Vickova, and J. Honzak, in Atmospheric Corrosion of Metals, ASTM STP 767, edited by S. W. Dean, Jr. and E. C. Rhea, ASTM, 1982, p. 7.

  5. M. E. Komp, M. E., Mater. Perf., p. 42 (July 1987).

    Google Scholar 

  6. D. Pereira, O. Nobre, and E. Almeida, in Progr, in the Understanding and Prevention of Corrosion, edited by J. M. Costa and A. D. Mercer, Vol. 1, p. 66 (1993).

    CAS  Google Scholar 

  7. C. R. Southwell, and J. D. Bultman, in Atmospheric Corrosion, edited by W. H. Ailor, Wiley, 1982, p. 943.

  8. C. R. Southwell, J. D. Bultman, and A. L. Alexander, Mater. Perf., p. 9, (July 1976).

    Google Scholar 

  9. H. E. Townsend, and J. C. Zoccola, in Atmospheric Corrosion of Metals, ASTM STP 767, edited by S. W. Dean, Jr. and E. C. Rhea, ASTM, 1982, p. 45.

  10. N. Q. Tri, V. D. Huy, L. V. Cuong, and P. Th. San, in Progress in the Understanding and Prevention of Corrosion, edited by J. M. Costa and A. D. Mercer, Vol. 1, p. 105 (1993).

    CAS  Google Scholar 

  11. F. I. Wei, Brit. Corr. J., 26, p. 209 (1991).

    CAS  Google Scholar 

  12. W. H. Vernon, Trans. Electrochem. Soc., 64, p. 31 (1933).

    Google Scholar 

  13. P. B. Phipps, and D. W. Rice, in Corrosion Chemistry, edited by G. R. Brubaker, and P. B. Phipps, ACS Symp. Ser. 89, Am. Chem. Soc, 1979, p. 235.

    CAS  Google Scholar 

  14. G. P. Marsh, and K. J. Taylor, Corr. Sci., 28, p. 289 (1988).

    CAS  Google Scholar 

  15. G. P. Marsh, K. J. Taylor, and Z. Sooi, SKB Technical Report 88–09 (Feb. 1988).

    Google Scholar 

  16. J. E. Strutt, J. R. Nichols, and B. Barbier, Corr. Sci., 25, p. 305 (1985).

    CAS  Google Scholar 

  17. C. P. Larrabee, Corrosion, 9, p. 259 (1953).

    CAS  Google Scholar 

  18. S. K. Coburn, Metals Handbook (9th Ed.), ASM, Vol. 1, p. 733 (1978).

    Google Scholar 

  19. C. R. Southwell, and A. L. Alexander, Mater. Protection, p. 14 (Jan. 1970).

    Google Scholar 

  20. D. M. Brasher, and A. D. Mercer, Brit. Corr. J., 3, p. 121 (1968).

    Google Scholar 

  21. A. D. Mercer, I. R. Jenkins, and J. E. Rhoades-Brown, Brit. Corr. J., 3, p. 136 (1968).

    CAS  Google Scholar 

  22. J. H. Lee, J. E. Atkins, and R. W. Andrews, this volume.

  23. H. Guttman, and P. J. Sereda, Metal Corrosion in the Atmosphere, ASTM STP 435, 1968, p. 326.

    Google Scholar 

  24. F. H. Haynie, and J. B. Upham, Corrosion in Natural Environments, ASTM STP 558, 1974, p. 33.

    CAS  Google Scholar 

  25. V. Kucera, and E. Mattsson, Corrosion in Natural Environments, ASTM STP 558, 1974, p. 239.

    CAS  Google Scholar 

  26. F. H. Haynie, J. W. Spence, and J. B. Upham, in Atmospheric Factors Affecting the Corrosion of Engineering Metals, ASTM STP 646, edited by S. K. Coburn, 1978, p. 30.

    Google Scholar 

  27. D. Fyfe, in Corrosion. Vol. 1-Metal/Environment Reactions, 3rd Ed., edited by L. L. Shreir, R. A. Jarman, and G. T. Burstein, Butterworth-Heinemann, p. 2:31 (1994).

    Google Scholar 

  28. R. D. McCright, and H. Weiss, in Scientific Basis for Nuclear Waste Management VIII, edited by C. M. Jantzen, J. A. Stone and R. C. Ewing, Mat. Res. Soc. Sym. Proc. 44, Pittsburg, PA, 1985, p. 287.

    CAS  Google Scholar 

  29. K. Masamura, and I. Matsushima, Trans. Iron & Steel Inst. Japan, 23, p. 676 (1983).

    CAS  Google Scholar 

  30. S. Nesic, in Progress in the Understanding and Prevention of Corrosion, edited by J. M. Costa and A. D. Mercer, Vol. 1, p. 539 (1993).

    Google Scholar 

Download references

Acknowledgments

This work was funded by the US DOE Yucca Mountain Site Characterization Office under Contract #DE-AC01-91RW00134 to TRW Environmental Safety systems, Inc.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Atkins, J.E. & Andrews, R.W. Humid-Air and Aqueous Corrosion Models for Corrosion-Allowance Barrier Material. MRS Online Proceedings Library 412, 571–580 (1995). https://doi.org/10.1557/PROC-412-571

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-412-571

Navigation