A functional limit theorem for random processes with immigration in the case of heavy tails
Volume 4, Issue 2 (2017), pp. 93–108
Pub. online: 12 April 2017
Type: Research Article
Open Access
Received
31 January 2017
31 January 2017
Revised
26 March 2017
26 March 2017
Accepted
27 March 2017
27 March 2017
Published
12 April 2017
12 April 2017
Abstract
Let $(X_{k},\xi _{k})_{k\in \mathbb{N}}$ be a sequence of independent copies of a pair $(X,\xi )$ where X is a random process with paths in the Skorokhod space $D[0,\infty )$ and ξ is a positive random variable. The random process with immigration $(Y(u))_{u\in \mathbb{R}}$ is defined as the a.s. finite sum $Y(u)=\sum _{k\ge 0}X_{k+1}(u-\xi _{1}-\cdots -\xi _{k})\mathbb{1}_{\{\xi _{1}+\cdots +\xi _{k}\le u\}}$. We obtain a functional limit theorem for the process $(Y(ut))_{u\ge 0}$, as $t\to \infty $, when the law of ξ belongs to the domain of attraction of an α-stable law with $\alpha \in (0,1)$, and the process X oscillates moderately around its mean $\mathbb{E}[X(t)]$. In this situation the process $(Y(ut))_{u\ge 0}$, when scaled appropriately, converges weakly in the Skorokhod space $D(0,\infty )$ to a fractionally integrated inverse stable subordinator.
References
Alsmeyer, G., Iksanov, A., Marynych, A.: Functional limit theorems for the number of occupied boxes in the Bernoulli sieve. Stoch. Process. Appl. 127(3), 995–1017 (2017). MR3605718. doi:10.1016/j.spa.2016.07.007
Alsmeyer, G., Iksanov, A., Meiners, M.: Power and exponential moments of the number of visits and related quantities for perturbed random walks. J. Theor. Probab. 28(1), 1–40 (2015). MR3320959. doi:10.1007/s10959-012-0475-7
Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encycl. Math. Appl., vol. 27. Cambridge University Press, Cambridge (1987), 491 p. MR0898871. doi:10.1017/CBO9780511721434
Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II. 2nd edn., John Wiley & Sons, Inc., New York, London, Sydney (1971), 669 p. MR0270403
Iksanov, A.: Functional limit theorems for renewal shot noise processes with increasing response functions. Stoch. Process. Appl. 123(6), 1987–2010 (2013). MR3038496. doi:10.1016/j.spa.2013.01.019
Iksanov, A., Jedidi, W., Bouzeffour, F.: Functional limit theorems for the number of busy servers in a G/G/∞ queue. Preprint available at https://arxiv.org/pdf/1610.08662.pdf
Iksanov, A., Kabluchko, Z., Marynych, A.: Weak convergence of renewal shot noise processes in the case of slowly varying normalization. Stat. Probab. Lett. 114, 67–77 (2016). MR3491974. doi:10.1016/j.spl.2016.03.015
Iksanov, A., Marynych, A., Meiners, M.: Limit theorems for renewal shot noise processes with eventually decreasing response functions. Stoch. Process. Appl. 124(6), 2132–2170 (2014). MR3188351. doi:10.1016/j.spa.2014.02.007
Iksanov, A., Marynych, A., Meiners, M.: Asymptotics of random processes with immigration I: Scaling limits. Bernoulli 23(2), 1233–1278 (2017). MR3606765. doi:10.3150/15-BEJ776
Iksanov, A.M., Marynych, A.V., Vatutin, V.A.: Weak convergence of finite-dimensional distributions of the number of empty boxes in the Bernoulli sieve. Theory Probab. Appl. 59(1), 87–113 (2015). MR3416065. doi:10.1137/S0040585X97986904
Marynych, A.: A note on convergence to stationarity of random processes with immigration. Theory Stoch. Process. 20(36)(1), 84–100 (2016). MR3502397