[go: up one dir, main page]

Skip to main content
Log in

Fractional optimal control problem for variable-order differential systems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we apply the classical control theory to a variable order fractional differential system in a bounded domain. The Fractional Optimal Control Problem (FOCP) for variable order differential system is considered. The fractional time derivative is considered in a Caputo sense. We first study by using the Lax-Milgram Theorem, the existence and the uniqueness of the solution of the variable order fractional differential system in a Hilbert space. Then we show that the considered optimal control problem has a unique solution. The performance index of a (FOCP) is considered as a function of both state and control variables, and the dynamic constraints are expressed by a Partial Fractional Differential Equation (PFDE) with variable order. The time horizon is fixed. Finally, we impose some constraints on the boundary control. Interpreting the Euler-Lagrange first order optimality condition with an adjoint problem defined by means of right fractional Caputo derivative, we obtain an optimality system for the optimal control. Some examples are analyzed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. and Appl. 272, No 1 (2002), 368–379.

    Article  MathSciNet  Google Scholar 

  2. O.P. Agrawal, A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynam. 38, No 1&4 (2004), 323–337.

    Article  MathSciNet  Google Scholar 

  3. O.P. Agrawal, D. Baleanu, A Hamiltonian formulation and direct numerical scheme for fractional optimal control problems. J. of Vibr. and Cont. 13, No 9&10 (2007), 1269–1281.

    Article  MathSciNet  Google Scholar 

  4. O.P. Agrawal, O. Defterli, D. Baleanu, Fractional optimal control problems with several state and control variables. J. of Vibr. and Cont. 16, No 13 (2010), 1967–1976.

    Article  MathSciNet  Google Scholar 

  5. B. Ahmad, S.K. Ntouyas, Existence of solutions for fractional differential inclusions with four-point nonlocal Riemann-Liouville type integral boundary conditions. Filomat. 27, No 6 (2013), 1027–1036.

    Article  MathSciNet  Google Scholar 

  6. T.M. Atanackovic, S. Pilipovic, Hamiltons principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 14, No 1 (2011), 94–109; 10.2478/s13540-011-0007-7. https://www.degruyter.com/view7j/fca.2011.14.issue-1/s13540-011-0007-7/s13540-011-0007-7.xml

    Article  MathSciNet  Google Scholar 

  7. G.M. Bahaa, Fractional optimal control problem for variational inequalities with control constraints. IMA J. Math. Control and Inform. 33, No 3 (2016), dnw040; 10.1093/imamci/dnw040.

    Google Scholar 

  8. G.M. Bahaa, Fractional optimal control problem for differential system with control constraints. Filomat. 30, No 8 (2016), 2177–2189.

    Article  MathSciNet  Google Scholar 

  9. G.M. Bahaa, Fractional optimal control problem for infinite order system with control constraints. Advan. Differ. Equat. 250 (2016), 1–16.

    MathSciNet  MATH  Google Scholar 

  10. G.M. Bahaa, Fractional optimal control problem for differential system with delay argument. Advan. Differ. Equat. 69 (2017), 1–19.

    MathSciNet  MATH  Google Scholar 

  11. G.M. Bahaa, W. Kotarski, Time-optimal control of infinite order dis-tributed parabolic systems involving multiple time-varying lags. Nu- mer. Funct. Anal. and Optim. 37, No 9 (2016), 1066–1088.

    Article  Google Scholar 

  12. G.M. Bahaa, Q. Tang, Optimal control problem for coupled time- fractional evolution systems with control constraints. J. Differ. Equat. and Dynam. Syst., Publ. online 20 Nov. 2017; 10.1007/s12591-017-0403-5.

    Google Scholar 

  13. G.M. Bahaa, Q. Tang, Optimality conditions for fractional diffusion equations with weak Caputo derivatives and variational formulation. J. Fract. Calc. Appl. 9, No 1 (2018), 100–119.

    MathSciNet  Google Scholar 

  14. D. Baleanu, S. I. Muslih, Lagrangian formulation on classical fields within Riemann-Liouville fractional derivatives. Phys. Scr. 72, No 2–3 (2005), 119–121.

    Article  MathSciNet  Google Scholar 

  15. D. Baleanu, T. Avkar, Lagrangian with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimnto B. 119, No 73 (2004), 73–79.

    Google Scholar 

  16. C. Bota, B. Caruntu, Analytic approximate solutions for a class of variable order fractional differential equations using the polynomial least squares method. Fract. Calc. Appl. Anal. 20, No 4 (2017), 1043–1050; 10.1515/fca-2017-0054. https://www.degruyter.com/view/jfca.2017.20.issue-4/fca-2017-0054/fca-2017-0054.xml

    Article  MathSciNet  Google Scholar 

  17. A. Debbouche, J.J. Nieto, Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls. Appl. Math. and Comp. 245 (2014), 74–85.

    Article  MathSciNet  Google Scholar 

  18. A. Debbouche, J.J. Nieto, Relaxation in controlled systems described by fractional integro-differential equations with nonlocal control conditions. Elect. J. of Diffe. Equat. 89 (2015), 1–18.

    MathSciNet  MATH  Google Scholar 

  19. A. Debbouche, D.F.M. Torres, Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions. Fract. Calc. Appl. Anal. 18, No 1 (2015), 95–121; 10.1515/fca-2015-0007. https://www.degruyter.com/view/j/fca.2015.18.issue-1/fca-2015-0007/fca-2015-0007.xml

    Article  MathSciNet  Google Scholar 

  20. A. Debbouche, J.J. Nieto, D.F.M. Torres, Optimal solutions to relaxation in multiple control problems of sobolev type with nonlocal nonlinear fractional differential equations. J. Optim. Theo. Appl. 174, No 1 (2017), 7–31.

    Article  MathSciNet  Google Scholar 

  21. I. Matychyn, V. Onyshchenko, Time-optimal control of fractional-order linear systems. Fract. Calc. Appl. Anal. 18, No 3 (2015), 687–696; 10.1515/fca-2015-0042. https://www.degruyter.com/view/j/fca.2015.18.issue-3/fca-2015-0042/fca-2015-0042.xml

    Article  MathSciNet  Google Scholar 

  22. F. Maraba, F. Jarad, T. Maraba, D. Baleanu, Fractional variational optimal control problems with delayed arguments. Non. Dynam. 62, No 23 (2010), 609–614.

    MathSciNet  Google Scholar 

  23. F. Jarad, T. Maraba, D. Baleanu, Higher order fractional variational optimal control problems with delayed arguments. Appl. Math. and Comput. 218, No 18 (2012), 9234–9240.

    MathSciNet  MATH  Google Scholar 

  24. F.M. Hafez, A.M.A. El-Sayed, M.A. El-Tawil, On a stochastic fractional calculus. Fract. Calc. Appl. Anal. 4, No 1 (2001), 81–90.

    MathSciNet  MATH  Google Scholar 

  25. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  26. J.L. Lions, Optimal Control of Systems Governed By Partial Differential Equations. Springer-Verlag (1971).

    Book  Google Scholar 

  27. Z. Liu, S. Zeng, Y. Bai, Maximum principles for multi-term spacetime variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 188–211; 10.1515/fca-2016-0011. https://www.degruyter.com/view/j/fca.2016.19.issue-1/fca-2016-0011/fca-2016-0011.xml

    Article  MathSciNet  Google Scholar 

  28. C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlin. Dyn. 29 (2002), 57–98.

    Article  MathSciNet  Google Scholar 

  29. A.B. Malinowska, D.F. Torres, Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012).

    Book  Google Scholar 

  30. G.M. Mophou, Optimal control of fractional diffusion equation. Com-puters and Mathematics with Applications. 61 (2011), 68–78.

    Article  MathSciNet  Google Scholar 

  31. G.M. Mophou, Optimal control of fractional diffusion equation with state constraints. Computers and Mathematics with Applications. 62 (2011), 1413–1426.

    Article  MathSciNet  Google Scholar 

  32. G.M. Mophou, G. N’Guerekata, Optimal control of a fractional diffusion equation with state constraints. Computers and Mathematics with Applications. 62 (2011), 1413–1426.

    Article  MathSciNet  Google Scholar 

  33. G.M. Mophou, C. Joseph, Optimal control with final observation of a fractional diffusion wave equation. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis. 23 (2016), 341–364.

    MathSciNet  MATH  Google Scholar 

  34. G.M. Mophou, S. Tao, C. Joseph, Initial value/boundary value problem for composite fractional relaxation equation. Applied Mathe-matics and Computation. 257 (2015), 134–144.

    Article  MathSciNet  Google Scholar 

  35. T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Variable order fractional variational calculus for double integrals. 51st IEEE Conference on Decision and Control, Maui, Hawaii, USA. Dec 10–13 2012, 68736–6878.

    Google Scholar 

  36. M. Pavlovic, Green’s formula and the Hardy-Stein identities. Filomat. 23, No 3 (2009), 135–153.

    Article  MathSciNet  Google Scholar 

  37. B. Ross, S. Samko, Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct. 1 (1993), 277–300.

    Article  MathSciNet  Google Scholar 

  38. Q. Tang, Q.X. Ma, Variational formulation and optimal control of fractional diffusion equations with Caputo derivatives. Adances in Diffrence Equations. 283 (2015), 1–14.

    MATH  Google Scholar 

  39. S. Umarov, S. Steinberg, Variable order differential equations with piecewise constant order-function and diffusion with changing modes. Zeitschrift fur Analysis und iher Anwendungen. 28 (2009), 431–450.

    Article  MathSciNet  Google Scholar 

  40. J.R. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls. Nonlinear Analysis: Real World Applications. 12 (2011), 262–272.

    Article  MathSciNet  Google Scholar 

  41. P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47 (2009), 1760–1781.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaber M. Bahaa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahaa, G.M. Fractional optimal control problem for variable-order differential systems. FCAA 20, 1447–1470 (2017). https://doi.org/10.1515/fca-2017-0076

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0076

MSC 2010

Key Words and Phrases

Navigation