[go: up one dir, main page]

Skip to main content
Log in

Diffusion and Fokker-Planck-Smoluchowski Equations with Generalized Memory Kernel

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider anomalous stochastic processes based on the renewal continuous time random walk model with different forms for the probability density of waiting times between individual jumps. In the corresponding continuum limit we derive the generalized diffusion and Fokker-Planck- Smoluchowski equations with the corresponding memory kernels. We calculate the qth order moments in the unbiased and biased cases, and demonstrate that the generalized Einstein relation for the considered dynamics remains valid. The relaxation of modes in the case of an external harmonic potential and the convergence of the mean squared displacement to the thermal plateau are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.H. Andersen, P. Castiglione, A. Mazzino and A. Vulpiani, Simple stochastic models showing strong anomalous diffusion. Eur. Phys. J. B 18 (2000), 447–452.

    Google Scholar 

  2. E. Bacry, J. Delour and J.F. Muzy, Multifractal random walk. Phys. Rev. E 64 (2001), 026103.

  3. E. Barkai, R. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61, No 1 (2000), 132–138.

    MathSciNet  Google Scholar 

  4. F. Bartumeus and S.A. Levin, Fractal reorientation clocks: Linking animal behaviour to statistical patterns of search. Proc. Natl. Acad. Sci. USA 105 (2008), 19072–19077.

    Google Scholar 

  5. C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups. Springer, Berlin (1975).

    MATH  Google Scholar 

  6. B. Berkowitz, A. Cortis, M. Dentz and H. Scher, Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44 (2006), RG2003.

  7. S. Burov, R. Metzler and E. Barkai, Aging and nonergodicity beyond the Khinchin theorem. Proc. Natl. Acad. Sci. USA 107 (2010), 13228–13233.

    MathSciNet  MATH  Google Scholar 

  8. J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195 (1990), 127–293.

    MathSciNet  Google Scholar 

  9. K. Burnecki, E. Kepten, J. Janczura, I. Bronshtein, Y. Garini and A. Weron, Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion. Biophys. J. 103 (2012), 1839–1847.

    Google Scholar 

  10. A. Cairoli and A. Baule, Anomalous processes with general waiting times: functionals and multi-point structure. arXiv.cond-mat/1411.7005.

  11. E. Capelas de Oliveira, F. Mainardi and J. Vaz Jr., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J. 193 (2011), 161–171.

    Google Scholar 

  12. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E, 66 (2002), 046129.

  13. A.V. Chechkin, R. Gorenflo, I.M. Sokolov and V.Yu. Conchar, Distributed order fractional diffusion equation. Fract. Calc. Appl. Anal. 6, No 3 (2003), 259–279.

    MathSciNet  MATH  Google Scholar 

  14. A.V. Chechkin, J. Klafter and I.M. Sokolov, Fractional Fokker-Planck equation for ultraslow kinetics. Europhysics Letters 63, No 3 (2003), 326–332.

    Google Scholar 

  15. A. Chechkin, I.M. Sokolov and J. Klafter, Natural and modified forms of distributed order fractional diffusion equations. In: Fractional Dynamics: Recent Advances, World Scientific, Singapore (2011).

    Google Scholar 

  16. A.C. Cherstvy, A.V. Chechkin and R. Metzler, Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New J. Phys. 15 (2013), 083039.

  17. A.C. Cherstvy, A.V. Chechkin and R. Metzler, Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity. Soft Matter 10 (2014), 1591–1601.

    Google Scholar 

  18. A.C. Cherstvy and R. Metzler, Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. Phys. Rev. E 90 (2014), 012134.

  19. A.C. Cherstvy and R. Metzler, Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. Chem. Phys. 15 (2013), 20220–20235.

    Google Scholar 

  20. J. Dräger and J. Klafter, Strong anomaly in diffusion generated by iterated maps. Phys. Rev. Lett. 84 (2000), 5998–6001.

    Google Scholar 

  21. C.H. Eab and S.C. Lim, Fractional Langevin equations of distributed order. Phys. Rev. E 83 (2011), 031136.

  22. A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcedential Functions, Vol. 3, McGraw-Hill, New York (1955).

    MATH  Google Scholar 

  23. K.S. Fa and K.G. Wang, Integrodifferential diffusion equation for continuous-time random walk. Phys. Rev. E 81 (2010), 011126.

  24. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York (1968).

    MATH  Google Scholar 

  25. A. Fuliński, How to generate and measure anomalous diffusion in simple systems. J. Chem. Phys. 138 (2013), 021101.

  26. A. Fuliński, Anomalous diffusion and weak nonergodicity. Phys. Rev. E 83 (2011), 061140.

  27. R. Fürth, Editor, Albert Einstein: Investigations on the Theory of the Brownian Movement. Dover, New York (1956).

    Google Scholar 

  28. N. Gal and D. Weihs, Experimental evidence of strong anomalous diffusion in living cells. Phys. Rev. E 81 (2010), 020903(R).

  29. A. Codec, A. V. Chechkin, E. Barkai, H. Kantz and R. Metzler, Localisation and universal fluctuations in ultraslow diffusion processes. J. Phys. A: Math. Theor. 47 (2014), 492002.

  30. I. Golding and E. C. Cox, Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96 (2006), 098102.

  31. M.C. González, C.A. Hidalgo and A.-L. Barabási, Understanding individual human mobility patterns. Nature 453 (2008), 779–782.

    Google Scholar 

  32. R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order. In: Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York (1997), 223–276.

    MATH  Google Scholar 

  33. I. Goychuk, Viscoelastic subdiffusion: From anomalous to normal. Phys. Rev. E 80 (2009), 046125.

  34. I. Goychuk, Viscoelastic subdiffusion: Generalized Langevin equation approach. Adv. Chem. Phys. 150 (2012), 187–253.

    Google Scholar 

  35. G. Guigas, C. Kalla and M. Weiss, Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys. J. 93 (2007), 316–323.

    Google Scholar 

  36. P. Guo, C.B. Zeng, C.P. Li and Y.Q. Chen, Numerics for the fractional Langevin Equation driven by the fractional Brownian motion. Fract. Cal. Appl. Anal. 16, No 1 (2013), 123–141; DOI: 10.2478/sl3540-013-0009-8; http://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-l.xmlview/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-l.xml.

    MathSciNet  MATH  Google Scholar 

  37. M. Hahn and S. Umarov, Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations. Fract. Calc. Appl. Anal. 14 (2011), 56–79; DOI: 10.2478/sl3540-011-0005-9; http://www.degruyter.eom/view/j/fca.2011.14.issue-1/issue-files/fca.2011.14.issue-1.xmlview/j/fca.2011.14.issue-1/issue-files/fca.2011.14.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  38. P. Hänggi, Correlation functions and master equations of generalized non-Markovian Langevin equations. Zeit. Physik B 31 (1978), 407–416.

    Google Scholar 

  39. P. Hänggi and F. Mojtabai, Thermally activated escape rate in presence of long-time memory. Phys. Rev. E 26 (1982), 1168–1170.

    Google Scholar 

  40. S. Havlin and D. Ben-Avraham, Diffusion in disordered media. Adv. Phys. 51 (2002), 187–292.

    Google Scholar 

  41. S. Havlin and G. H. Weiss, A new class of long-tailed pausing time densities for the CTRW. J. Stat. Phys. 58 (1990), 1267–1273.

    Google Scholar 

  42. Y. He, S. Burov, R. Metzler and E. Barkai, Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett. 101 (2008), 058101.

  43. E. Heinsalu, M. Patriarca, I. Goychuk, G. Schmid and P. Hänggi, Fractional Fokker-Planck dynamics: Numerical algorithm and simulations. Phys. Rev. E 73 (2006), 046133.

  44. R. Hilfer, Exact solutions for a class of fractal time random walks. Fractals 3 (1995), 211–216.

    MathSciNet  MATH  Google Scholar 

  45. R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives. J. Phys. Chem. B 104 (2000), 3914–3917.

    Google Scholar 

  46. R. Hilfer, On fractional diffusion and continuous time random walks. Physica A 329 (2003), 35–40.

    MathSciNet  MATH  Google Scholar 

  47. R. Hilfer and L. Anton, Fractional master equations and fractal time random walks. Phys. Rev. E 51 (1995), R848.

  48. F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells. Rep. Progr. Phys. 76 (2013), 046602.

  49. J.-H. Jeon, A.V. Chechkin and R. Metzler, Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Phys. Chem. Chem. Phys. 16 (2014), 15811–15817.

    Google Scholar 

  50. J.-H. Jeon, N. Leijnse, L.B. Oddershede and R. Metzler, Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions. New J. Phys. 15 (2013), 045011.

  51. J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede and R. Metzler, In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106 (2011), 048103.

  52. M. Jullien, J. Paret and P. Tabeling, Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett. 82 (1999), 2872.

  53. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde and H.E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316 (2002), 87–114.

    MATH  Google Scholar 

  54. J. Klafter, A. Blumen and M.F. Shlesinger, Stochastic pathway to anomalous diffusion. Phys. Rev. A 35 (1987), 3081.

  55. A. Klemm and R. Kimmich, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects. Phys. Rev. E 55 (1997), 4413.

  56. A. Klemm, R. Metzler and R. Kimmich, Diffusion on random-site percolation clusters: Theory and NMR microscopy experiments with model objects. Phys. Rev. E 65 (2002), 021112.

  57. G. Kneller, A scaling approach to anomalous diffusion. J. Chem Phys. 141 (2014), 041105.

  58. A.N. Kolmogorov, Curves in Hilbert spaces invariant relative to one-parametric group of motions. Dokl. Akad. Nauk SSSR 26 (1940), 6–9.

    Google Scholar 

  59. S.C. Kou, Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. Ann. Appl. Stat. 2 (2008), 501–535.

    MathSciNet  MATH  Google Scholar 

  60. S.C. Lim and S.V. Muniandy, Self-similar Gaussian processes for modeling anomalous diffusion. Phys. Rev. E 66 (2002), 021114.

  61. M.A. Lomholt, T. Koren, R. Metzler and J. Klafter, Levy strategies in intermittent search processes are advantageous. Proc. Natl. Acad. Sci. USA 105 (2008), 11055–11059.

    Google Scholar 

  62. M.A. Lomholt, L. Lizana, R. Metzler and T. Ambjörnsson, Microscopic origin of the logarithmic time evolution of aging processes in complex systems. Phys. Rev. Lett. 110 (2013), 208301.

  63. C. Loverdo, O. Bénichou, M. Moreau and R. Voiturierz, Enhanced reaction kinetics in biological cells. Nature Phys. 4 (2008), 134–137.

    Google Scholar 

  64. Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnamica 24 (1999), 207–233.

    MathSciNet  MATH  Google Scholar 

  65. E. Lutz, Fractional Langevin equation. Phys. Rev. E 64 (2001), 051106.

  66. M. Magdziarz, Langevin picture of subdiffusion with infinitely divisible waiting times. J. Stat. Phys. 135 (2009), 763–772.

    MathSciNet  MATH  Google Scholar 

  67. B.B. Mandelbrot, Multifractals and 1/f Noise: Wild Self-Affinity in Physics. Springer, Berlin (1999).

    MATH  Google Scholar 

  68. B.B. Mandelbrot and J.W. van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968), 422–437.

    MathSciNet  MATH  Google Scholar 

  69. P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. García-Parako, M. Lewenstein and G. L. Lapeyre, Jr., Nonergodic subdiffusion from Brownian motion in an inhomogeneous medium. Phys. Rev. Lett. 112 (2014), 150603.

  70. Y. Meroz, I.M. Sokolov and J. Klafter, Subdiffusion of mixed origins: When ergodicity and nonergodicity coexist. Phys. Rev. E 81 (2010), 010101(R).

  71. R. Metzler, Generalized Chapman-Kolmogorov equation: A unifying approach to the description of anomalous transport in external fields. Phys. Rev. E 62 (2000), 6233.

  72. R. Metzler, E. Barkai and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82 (1999), 3563.

  73. R. Metzler, E. Barkai and J. Klafter, Deriving fractional Fokker-Planck equations from a generalised master equation. Europhys. Lett. 46, No 4 (1999), 431–436.

    MathSciNet  Google Scholar 

  74. R. Metzler and J. Klafter, Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion. Phys. Rev. E 61 (2000), 6308.

  75. R. Metzler, J.-H. Jeon, A.G. Cherstvy and E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16 (2014), 24128–24164.

    Google Scholar 

  76. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

    MathSciNet  MATH  Google Scholar 

  77. R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37 (2004), R161–R208.

    MathSciNet  MATH  Google Scholar 

  78. E.W. Montroll, Random walks on lattices. III. Calculation of first-passage times with application to exciton trapping on photosynthetic units. J. Math. Phys. 10 (1969), 753.

  79. S. Ott and J. Mann, An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422 (2000), 207–223.

    MATH  Google Scholar 

  80. V.V. Palyulin, A.V. Chechkin and R. Metzler, Levy flights do not always optimize random blind search for sparse targets. Proc. Natl. Acad. Sci. USA 111 (2014), 2931–2936.

    Google Scholar 

  81. W. Pan, L. Filobelo, N.D.Q. Pham, O. Galkin, V.V. Uzunova and P.G. Vekilov, Viscoelasticity in homogeneous protein solutions. Phys. Rev. Lett. 102 (2009), 058101.

  82. J. Paneva-Konovska, Convergence of series in three parametric Mittag-Leffler functions. Math. Slovaca 64, No 1 (2014), 73–84; DOI: 10.2478/sl2175-013-0188-0.

    MathSciNet  MATH  Google Scholar 

  83. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  84. T.R. Prabhakar, A singular equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971), 7–15.

    MathSciNet  MATH  Google Scholar 

  85. A. Rebenshtok, S. Denisov, P. Hänggi and E. Barkai, Non-normalizable densities in strong anomalous diffusion: Beyond the central limit theorem. Phys. Rev. Lett. 112 (2014), 110601.

  86. L.F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. A 110 (1926), 709–737.

    Google Scholar 

  87. D. Robert, T.H. Nguyen, F. Gallet and C. Wilhelm, In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS ONE 4 (2010), e10046.

    Google Scholar 

  88. L.P. Sanders, M.A. Lomholt, L. Lizana, K. Fogelmark, R. Metzler and T. Ambjörnsson, Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: ageing and ultraslow diffusion. New J. Phys. 16 (2014), 113050.

    Google Scholar 

  89. T. Sandev, A. Chechkin, N. Korabel, H. Kantz, I.M. Sokolov and R. Metzler, Distributed order diffusion equations and multifractality: models and solutions. Submitted.

  90. T. Sandev, R. Metzler and Z. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative. J. Phys. A: Math. Theor. 44 (2011), 255203.

    MathSciNet  MATH  Google Scholar 

  91. T. Sandev, R. Metzler and Ž Tomovski, Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise. J. Math. Phys. 55 (2014), 023301.

    MathSciNet  MATH  Google Scholar 

  92. T. Sandev, I. Petreska and E.K. Lenzi, Time-dependent Schrödinger-like equation with nonlocal term. J. Math. Phys. 55 (2014), 092105.

    MathSciNet  MATH  Google Scholar 

  93. T. Sandev and Ž Tomovski, Langevin equation for a free particle driven by power law type of noises. Phys. Lett. A 378 (2014), 1–9.

    MathSciNet  MATH  Google Scholar 

  94. T. Sandev, Ž Tomovski and J.L.A. Dubbeldam, Generalized Langevin equation with a three parameter Mittag-Leffler noise. Physica A 390 (2011), 3627–3636.

    Google Scholar 

  95. R.K. Saxena, A.M. Mathai and H.J. Haubold, Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. Space Sci. 290 (2004), 299–310.

    Google Scholar 

  96. M. Saxton, Wanted: A positive control for anomalous subdiffusion. Biophys. J. 103 (2012), 2411–2422.

    Google Scholar 

  97. M. Saxton, Single-particle tracking: the distribution of diffusion coefficients. Biophys. J. 72 (1997), 1744–1753.

    Google Scholar 

  98. H. Scher, G. Margolin, R. Metzler, J. Klafter and B. Berkowitz, The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times. Geophys. Res. Lett. 29 (2002), 1061.

    Google Scholar 

  99. H. Scher and E.W. Montroll, Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12 (1975), 2455.

    Google Scholar 

  100. R. Schilling, R. Song and Z. Vondracek, Bernstein Functions. De Gruyter, Berlin (2010).

    MATH  Google Scholar 

  101. F.G. Schmitt and L. Seuront, Multifractal random walk in copepod behaviour. Physica A 301 (2001), 375–396.

    MATH  Google Scholar 

  102. M. Schubert, E. Preis, J.C. Blakesley, P. Pingel, U. Scherf and D. Neher, Mobility relaxation and electron trapping in a donor/acceptor copolymer. Phys. Rev. B 87 (2013), 024203.

    Google Scholar 

  103. L. Seuront, F.G. Schmitt, M.C. Brewer, J.R. Strickler and S. Souissi, From random walk to multifractal random walk in Zooplankton swimming behaviour. Zoological Studies 43 (2004), 498–510.

    Google Scholar 

  104. I.M. Sokolov, Thermodynamics and fractional Fokker-Planck equations. Phys. Rev. E 63 (2001), 056111.

    Google Scholar 

  105. I. M. Sokolov, A. V. Chechkin and J. Klafter, Distributed-order fractional kinetics. Acta Phys. Polon. B 35 (2004), 1323–1341.

    Google Scholar 

  106. I.M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion. Chaos 15 (2005), 26103.

    MathSciNet  MATH  Google Scholar 

  107. T.H. Solomon, E.R. Weeks and H.L. Swinney, Observation of anomalous diffusion and Levy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71 (1993), 3975.

    Google Scholar 

  108. C.M. Song, T. Koren, P. Wang and A.-L. Barabási, Modelling the scaling properties of human mobility. Nature Phys. 6 (2010), 818–823.

    Google Scholar 

  109. M. Spanner, F. Höfling, G.E. Schröder-Turk, K. Mecke and T. Franosch, Anomalous transport of a tracer on percolating clusters. J. Phys. Cond. Mat. 23 (2011), 234120.

    Google Scholar 

  110. A. Stanislavsky and K. Weron, Numerical scheme for calculating of the fractional two-power relaxation laws in time-domain of measurements. Comput. Phys. Commun. 183 (2012), 320–323.

    MathSciNet  MATH  Google Scholar 

  111. A. Stanislavsky, K. Weron and J. Trzmiel, Subordination model of anomalous diffusion leading to the two-power-law relaxation responses. EPL 91 (2010), 40003.

  112. A. Stanislavsky, K. Weron and A. Weron, Diffusion and relaxation controlled by tempered α-stable processes. Phys. Rev. E 78 (2008), 051106.

    MathSciNet  Google Scholar 

  113. A. Stanislavsky, K. Weron and A. Weron, Anomalous diffusion with transient subordinators: A link to compound relaxation laws. J. Chem. Phys. 140 (2014), 054113.

  114. J. Szymanski and M. Weiss, Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 103 (2009), 038102.

    Google Scholar 

  115. S.M.A. Tabei, S. Burov, H.Y. Kim, A. Kuznetsov, T. Huynh, J. Jureller, L.H. Philipson, A.R. Dinner and N.F. Scherer, Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl. Acad. Sci. USA 110 (2013), 4911–4916.

    Google Scholar 

  116. A.A. Tateishi, E.K. Lenzi, L.R. da Silva, H.V. Ribeiro, S. Picoli Jr. and R.S. Mendes, Different diffusive regimes, generalized Langevin and diffusion equations. Phys. Rev. E 85 (2012), 011147.

    Google Scholar 

  117. F. Thiel and I.M. Sokolov, Scaled Brownian motion as a mean-field model for continuous-time random walks. Phys. Rev. E 89 (2014), 012115.

    Google Scholar 

  118. Ž Tomovski, T. Sandev, R. Metzler and J. Dubbeldam, Generalized space-time fractional diffusion equation with composite fractional time derivative. Physica A 391 (2012), 2527–2542.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trifce Sandev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandev, T., Chechkin, A., Kantz, H. et al. Diffusion and Fokker-Planck-Smoluchowski Equations with Generalized Memory Kernel. FCAA 18, 1006–1038 (2015). https://doi.org/10.1515/fca-2015-0059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0059

MSC 2010

Key Words and Phrases

Navigation