[go: up one dir, main page]

Skip to main content
Log in

On explicit stability conditions for a linear fractional difference system

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The paper describes the stability area for the difference system (Δαy)(n + 1 − α) = Ay(n), n= 0, 1,..., with the Caputo forward difference operator Δα of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann- Liouville type are discussed as well, including related consequences and illustrating examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abdeljawad, On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, No 3 (2011), 1602–1611.

    Article  MathSciNet  Google Scholar 

  2. R. Abu-Saris, Q. Al-Mdallal, On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16, No 3 (2013), 613–629; DOI: 10.2478/s13540-013-0039-2; http://www.degruyter.com/view/j/fca.2013.16.issue-3/s13540-013-0039-2/s13540-013-0039-2.xml; http://link.springer.com/article/10.2478/s13540-013-0039-2.

    Article  MathSciNet  Google Scholar 

  3. J.A.D. Appleby, I. Gyori, D.W. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations. J. Differ. Equ. Appl. 12, No 12 (2006), 1257–1275.

    Article  MathSciNet  Google Scholar 

  4. T.M. Apostol, Mathematical Analysis. 2nd Ed., World Student Series Edition, Addison-Wesley (1974).

    MATH  Google Scholar 

  5. F.M. Atici, P.W. Eloe, A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2, No 2 (2007), 165–176.

    MathSciNet  Google Scholar 

  6. F.M. Atici, P.W. Eloe, Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41, No 2 (2011), 353–370.

    Article  MathSciNet  Google Scholar 

  7. F. Chen, Fixed points and asymptotic stability of nonlinear fractional difference equations. El. J. Qualit. Theory Differ. Equ. 2011, No 39 (2011), 18 pages.

    Google Scholar 

  8. J. Čermák, T. Kisela, L. Nechvátal, Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 219, No 12 (2013), 7012–7022.

    MathSciNet  MATH  Google Scholar 

  9. J. Čermák, L. Nechvátal, On (q, h)-analogue of fractional calculus, J. Nonlinear Math. Phys. 17, No 1 (2010), 51–68.

    Article  MathSciNet  Google Scholar 

  10. S. Elaydi, An Introduction to Difference Equations. 3rd Ed., Undergraduate Texts in Mathematics, Springer, New York (2005).

    MATH  Google Scholar 

  11. S. Elaydi, S. Murakami, Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type. J. Differ. Equ. Appl. 2, No 4 (1996), 401–410.

    Article  MathSciNet  Google Scholar 

  12. R.A.C. Ferreira, D.F.M. Torres, Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5, No 1 (2011), 110–121.

    Article  MathSciNet  Google Scholar 

  13. L. Galeone, R. Garrappa, On multistep methods for differential equations of fractional order. Mediterr. J. Math. 3, No 3 (2006), 565–580.

    Article  MathSciNet  Google Scholar 

  14. L. Galeone, R. Garrappa, Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, No 2 (2009), 548–560.

    Article  MathSciNet  Google Scholar 

  15. T. Kisela, An analysis of the stability boundary for a linear fractional difference system. Math. Bohem. (to appear).

  16. C.P. Li, Y. Ma, Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, No 4 (2013), 621–633

    Article  MathSciNet  Google Scholar 

  17. C.P. Li, F.R. Zhang, A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, No 1 (2011), 27–47.

    Article  Google Scholar 

  18. C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17, No 3 (1986), 704–719.

    Article  MathSciNet  Google Scholar 

  19. C. Lubich, A stability analysis of convolution quadratures for Abel- Volterra integral equations. IMA J. Numer. Anal. 6, No 1 (1986), 87–101.

    Article  MathSciNet  Google Scholar 

  20. D. Matignon, Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application Multiconference, IMACS, IEEE-SMC, Lille, France, Vol. 2 (1996), 963–968.

    Google Scholar 

  21. I. Petráš, Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12, No 3 (2009), 269–298; available at http://www.math.bas.bg/∼fcaa.

    MathSciNet  MATH  Google Scholar 

  22. I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Springer, Beijing, Berlin (2011).

    Book  Google Scholar 

  23. I. Podlubný, Fractional Differential Equations. Academic Press, New Jersey (1999).

    MATH  Google Scholar 

  24. Y. Zhou, Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Čermák.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čermák, J., Győri, I. & Nechvátal, L. On explicit stability conditions for a linear fractional difference system. FCAA 18, 651–672 (2015). https://doi.org/10.1515/fca-2015-0040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0040

MSC 2010

Keywords

Navigation