[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Modeling Extreme-Event Precursors with the Fractional Diffusion Equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Extreme catastrophic events such as earthquakes, terrorism and economic collapses are difficult to predict. We propose a tentative mathematical model for the precursors of these events based on a memory formalism and apply it to earthquakes suggesting a physical interpretation. In this case, a precursor can be the anomalous increasing rate of events (aftershocks) following a moderate earthquake, contrary to Omori’s law. This trend constitute foreshocks of the main event and can be modelled with fractional time derivatives. A fractional derivative of order 0 < v < 2 replaces the first-order time derivative in the classical diffusion equation.

We obtain the frequency-domain Green’s function and the corresponding time-domain solution by performing an inverse Fourier transform. Alternatively, we propose a numerical algorithm, where the time derivative is computed with the Grünwald-Letnikov expansion, which is a finitedifference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. The calculation requires to store the whole field in the computer memory since anomalous diffusion “remembers the past”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Agrawal, Solution for a fractional diffusion-wave equation defined, in a bounded domain. Nonlinear Dynamics 29 (2002), 145–155.

    MathSciNet  MATH  Google Scholar 

  2. M. Caputo, Linear models of dissipation whose Q is almost frequency, independent-II. Geophysical Journal of the Royal Astronomical Society 3 (1967), 529–539; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1, (2008), 3-14.

    Google Scholar 

  3. M. Caputo, Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, No 4 (2001), 421–442.

    Google Scholar 

  4. M. Caputo, Mathematical modelling of an extreme-event precursor. Accademia delle Scienze di Ferrara 85 (2008), 201–209.

    Google Scholar 

  5. M. Caputo, The convergence of economic developments. Studies in Non Linear Dynamics & Econometrics 16, No 2 (2012), 1558–3708.

    MathSciNet  Google Scholar 

  6. M. Caputo, R. Console, A. M. Gabrielov, V. I. Keilis-Borok, T. V. Sidorenko, Long term premonitory seismicity patterns in Italy. Geophysical J. of the Royal Astronomical Society 75, No 1 (1983), 71–77.

    Google Scholar 

  7. M. Caputo, P. Gasperini, V. I. Keilis-Bork, L. Marcelli, I. Rotwain, Earthquake’s swarms as forerunners of strong earthquakes in Italy. Annalidi Geofisica 30, No 3–4 (1977), 269–283.

    Google Scholar 

  8. J. M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Handbook of Geophysical Exploration, Vol. 38, Elsevier (2nd Ed., revised and extended) (2007).

  9. J. M. Carcione, F. Cavallini, F. Mainardi, A. Hanyga, Time-domain seismic modeling of constant Q-wave propagation using fractional derivatives. Pure and Applied Geophysics 159 (2002), 1719–1736.

    Google Scholar 

  10. J. M. Carcione, G. Herman, F. P.E. ten Kroode, Seismic modeling. Geophysics 67 (2002), 1304–1325.

    Google Scholar 

  11. J. M. Carcione, C. Morency, J. E. Santos, Computational poroelasticity - A review. Geophysics 75 (2010), A229–A243.

    Google Scholar 

  12. J. M. Carcione, Theory and modeling of constant-Q P- and S-waves using fractional time derivatives. Geophysics 74 (2009), T1–T11.

    Google Scholar 

  13. F. Cesarone, M. Caputo, C. Cametti, Memory formalism in the passive diffusion across a biological membrane. J. Membrane Science 250 (2005), 79–84.

    Google Scholar 

  14. D. del-Castillo-Negrete, B. A. Carreras, V. E. Lynch, Fractional diffusion in plasma turbulence. Phys. Plasmas 11 (2004), 3854–3864.

    Google Scholar 

  15. K. Diethelm, The Analysis of Fractional Differential Equations. A. Application Oriented Exposition using Differential Operators of Caputo Type. Lecture Notes in Mathematics No 2004, Springer, Heidelbereg (2010).

    MATH  Google Scholar 

  16. M. El-Shahed, A fractional calculus model of semilunar heart valve vibrations. Proceedings of DETC03, Chicago (2003).

    Google Scholar 

  17. R. Gorenflo, Yu. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, No 4 (1999), 383–414.

    MathSciNet  MATH  Google Scholar 

  18. A. K. Grünwald, Über “begrenzte” Derivationen und deren Anwendung. Zeitschrift für Angewandte Mathematik und Physik 12 (1867), 441–480.

    Google Scholar 

  19. A. Hanyga, Multidimensional solutions of time-fractional diffusionwave equations. Proc. of the Royal Society of London A458 (2002), 933–957.

    MATH  Google Scholar 

  20. A. Helmstetter, D. Sornette, J. Grasso, Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws. J. Geophys. Res. 108 (B1) (2003), 2046; doi:10.1029/2002JB001991.

  21. G. Iaffaladano, M. Caputo, S. Martino, Experimental and theoretical memory diffusion of water in sand. Hydrology amd Earth System Sciences 10 (2006), 93–100.

    Google Scholar 

  22. Z. Jiao, Y. Chen, I. Podlubny, Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. Springer (2012)

    MATH  Google Scholar 

  23. H. Kanamori, E. E. Brodsky, The physics of earthquakes. Rep. Prog. Phys. 67 (2004), 1429–1496.

    MathSciNet  Google Scholar 

  24. V. I. Keilis-Borok, A. A. Soloviev, Non Linear Dynamics of the Lithosphere and Earthquake Prediction. Springer, Heidelberg (2003).

    Google Scholar 

  25. V. I. Keilis-Borok, A. A. Soloviev, C. B. Allégre, A. N. Sobolevskii, M. D. Intrilligator, Patterns of macroeconomic indicators preceding the unemployment rise in Western Europe and USA. Pattern Recognition 38, No 3 (2005), 423–435.

    MATH  Google Scholar 

  26. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  27. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Sci. & Techn., Harlow and J. Wiley & Sons, New York (1994).

    MATH  Google Scholar 

  28. J. Kolari, M. Caputo, D. Wagner, Trait recognition: An alternative approach to early warning systems in commercial banking. J. of Business Finance and Accounting 23 (1996), 1415–1434.

    Google Scholar 

  29. A. V. Letnikov, Theory of differentiation of fractional order. Matematiceskij Sbornik 3 (1868), 1–68 (in Russian).

    Google Scholar 

  30. F. Mainardi, Fractional diffusive waves in viscoelastic solids. In: J. L. Wegner and F. R. Norwood (Eds.), IUTAM Sympos. on Nonlinear Waves in Solids, ASME Book N. AMR 137, Fairfield - NJ (1995), 93–97.

    Google Scholar 

  31. F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons and Fractals 7, No 9 (1996), 1461–1477.

    MathSciNet  MATH  Google Scholar 

  32. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: A. Introduction to Mathematical Models. World Scientific Publishing (2010).

    MATH  Google Scholar 

  33. F. Mainardi, A. Mura, G. Pagnini, R. Gorenflo, Time-fractional diffusion of distributed order. J. of Vibration and Control 14 (2008), 1267–1290.

    MathSciNet  MATH  Google Scholar 

  34. F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and continuous-time finance II: The waiting-time distribution. Physica A 287 (2000), 468–481.

    MATH  Google Scholar 

  35. F. Mainardi, M. Tomirotti, Seismic pulse propagation with constant Q and stable probability distributions. Annali di Geofisica 40 (1997), 1311–1328.

    Google Scholar 

  36. M. Naber, Distributed order fractional subdiffusion. Fractals 12, No 1 (2004), 23–32.

    MathSciNet  MATH  Google Scholar 

  37. T. Parsons, Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone. J. Geophys. Res. 107, B9 (2002), 2199; doi:10.1029/2001JB000646.

    Google Scholar 

  38. Z. Peng, J. E. Vidale, M. Ishii, A. Helmstetter, Seismicity rate immediately before and after main shock rupture from highfrequency waveforms in Japan. J. Geophys. Res. 112 (2007), B03306; doi:10.1029/2006JB004386.

  39. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  40. E. Scalas, R Gorenflo, F. Mainardi, Fractional calculus and continuoustime finance. Physica A: Statistical Mechanics and its Applications 284, No 1 (2000), 376–384.

    Google Scholar 

  41. G. Seriani, E. Priolo, J. M. Carcione, E. Padovani, High-order spectral element method for elastic wave modeling: High-order spectral element method for elastic wave modeling. In: The 62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts (1992), 1285–1288.

    Google Scholar 

  42. D. Sornette, Critical Phenomena in Natural Sciences. Springer Verlag, Heidelberg (2002).

    Google Scholar 

  43. B. Stanković, On the function of E. M. Wright, Publ. de l’lnst. Mathématique, Beograd, Nouvelle Ser. 10, No 24 (1970), 113–124.

    Google Scholar 

  44. T. Utsu, Y. Ogata, R. S. Matsuura, The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43 (1995), 1–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Caputo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caputo, M., Carcione, J.M. & Botelho, M.A.B. Modeling Extreme-Event Precursors with the Fractional Diffusion Equation. FCAA 18, 208–222 (2015). https://doi.org/10.1515/fca-2015-0014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0014

Key Words

Key Words and Phrases

Navigation