Abstract
We describe Darwin X, a physical device that interacts with a real environment, whose behavior is guided by a simulated nervous system incorporating aspects of the detailed anatomy and physiology of the hippocampus and its surrounding regions. This brain-based device integrates cues from its environment and solves a spatial memory task. The responses of simulated neuronal units in the hippocampal areas during its exploratory behavior are comparable to place cells in the rodent hippocampus and emerged by associating sensory cues during exploration. To identify different functional hippocampal pathways and their influence on behavior, we employed a time series analysis that distinguishes causal interactions within and between simulated hippocampal and neocortical regions while the device is engaged in a spatial memory task. Our analysis identified different functional pathways within the neural simulation and prompts novel predictions about the influence of the perforant path, the trisynaptic loop and hippocampal-cortical interactions on place cell activity and behavior during navigation. Moreover, this causal time series analysis may be useful in analyzing networks in general.
Similar content being viewed by others
References
Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723.
Almassy, N., Edelman, G. M., and Sporns, O. (1998) Behavioral constraints in the development of neuronal properties: a cortical model embedded in a real-world device. Cereb. Cortex 8, 346–361.
Amaral, D.G., Ishizuka, N., and Claiborne, B. (1990) Neurons, numbers and the hippocampal network. In: Progress in Brain Research. Ottersen, O.P. (ed.) ElsevierScience, Amsterdam, pp. 1–11.
Arleo, A. and Gerstner, W. (2000) Modeling rodent head-direction cells and place cells for spatial learning in bio-mimetic robotics. Paper presented at: From Animals to Animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior, MIT Press, Paris, France.
Aston-Jones, G. and Bloom, F. E. (1981) Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1, 887–900.
Bachelder, I. A. and Waxman, A. M. (1995) A view-based neurocomputational system for relational map-making and navigation in visual environments. Auton. Syst. 16, 267–289.
Battaglia, F. P., Sutherland, G. R., and McNaughton, B. L. (2004) Local sensory cues and place cell directionality: Additional evidence of prospective coding in the hippocampus. J. Neurosci. 24, 4541–4550.
Bernard, C. and Wheal, H. V. (1994) Model of local connectivity patterns in CA3 and CA1 areas of the hippocampus. Hippocampus 4, 497–529.
Bernasconi, C. and Konig, P. (1999) On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biol. Cybern. 81, 199–210.
Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48.
Blum, K. I. and Abbott, L. F. (1996) A model of spatial map formation in the hippocampus of the rat. Neural Comput. 8, 85–93.
Boudjellaba, B., Dufour, J.-M., and Roy, R. (1992) Testing causality between two vextors in multivariate ARMA models. J. Am. Stat. Assoc. 87, 1082–1090.
Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., and Bressler, S. L. (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl. Acad. Sci. USA 101, 9849–9854.
Brun, V. H., Otnass, M. K., Molden, S., et al. (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246.
Burgess, N., Donnett, J. G., Jeffery, K. J., and O’Keefe, J. (1997) Robotic and Neural Simulation of the Hippocampus and Rat Navigation. Biol. Sci. 352, 1535–1543.
Chavarriaga, R., Strösslin, T., Sheynikhovich, D., and Gerstner, W. (2005) A computational model of parallel navigation systems in rodents. Neuroinformatics 3(3), in press.
Edelman, G. M. (1987) Neural Darwinism: The Theory of Neuronal Group Selection. Basic Books, Inc., New York.
Edelman, G. M., Reeke, G. N., Gall, W. E., Tononi, G., Williams, D., and Sporns, O. (1992) Synthetic neural modeling applied to a real-world artifact. Proc. Natl. Acad. Sci. USA 89, 7267–7271.
Farah, M. (1994) Neuropsychological inference with an interactive brain: A critique of the locality assumption. Behav. Brain Sci. 17, 43–61.
Ferbinteanu, J. and Shapiro, M. L. (2003) Prospective and retrospective memory coding in the hippocampus. Neuron 40, 1227–1239.
Floreano, D. and Mondada, F. (1998) Evolutionary neurocontrollers for autonomous mobile robots. Neural Netw. 11, 1461–1478.
Foster, D. J., Morris, R. G., and Dayan, P. (2000) A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10, 1–16.
Frank, L. M., Brown, E. N., and Wilson, M. (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27, 169–178.
Freund, T. F. and Buzsaki, G. (1996) Interneurons of the hippocampus. Hippocampus 6, 347–470.
Gaussier, P., Revel, A., Banquet, J. P., and Babeau, V. (2002) From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. Biol. Cybern. 86, 15–28.
Granger, C. W. J. (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438.
Griffiths, D., Dickinson, A., and Clayton, N. (1999) Episodic memory: what can animals remember about their past? Trends Cogn. Sci. 3, 74–80.
Grossberg, S. (1999) The link between brain learning, attention, and consciousness. Conscious Cogn. 8, 1–44.
Hasselmo, M. E., Bodelon, C., and Wyble, B. P. (2002a). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793–817.
Hasselmo, M. E., Hay, J., Ilyn, M., and Gorchetchnikov, A. (2002b). Neuromodulation, theta rhythm and rat spatial navigation. Neural Netw. 15, 689–707.
Ijspeert, A. J., Crespi, A., and Cabelguen, J.-M. (2005) Towards a salamander robot: applying neurobiological principles to the control of locomotion in robots. Neuroinformatics 3(3), in press.
Kaminski, M., Ding, M., Truccolo, W. A., and Bressler, S. L. (2001) Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85, 145–157.
Keinan, A., Sandbank, B., Hilgetag, C. C., Meilijson, I., and Ruppin, E. (2004) Fair attribution of functional contribution in artificial and biological networks. Neural Comput. 16, 1887–1915.
Kotter, R. and Stephan, K. E. (2003) Network participation indices: characterizing component roles for information processing in neural networks. Neural Netw. 16, 1261–1275.
Krichmar, J. L. and Edelman, G. M. (2002) Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cereb. Cortex 12, 818–830.
Krichmar, J. L., Nitz, D. A., Gally, J. A., and Edelman, G. M. (2005) Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory task. Proc. Natl. Acad. Sci. USA 102, 2111–2116.
Kubie, J. L., Muller, R. U., and Bostock, E. (1990) Spatial firing properties of hippocampal theta cells. J. Neurosci. 10, 1110–1123.
Lavenex, P. and Amaral, D. G. (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10, 420–430.
Liang, H., Ding, M., Nakamura, R., and Bressler, S. L. (2000) Causal influences in primate cerebral cortex during visual pattern discrimination. Neuroreport 11, 2875–2880.
Mataric, M. J. (1991) Navigating with a rat brain: A neurobiologically-inspired model for robot spatial representation. In: From Animals to Animats. Meyer, J. A. and Wilson, S. W. (eds.) MIT Press, Cambridge, MA, pp. 169–175.
Milford, M. J., Wyeth, G. F., and Prasser, D. (2004) RatSLAM: A Hippocampal Model for Simultaneous Localization and Mapping. Paper presented at: Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA.
Mogenson, G. and Nielsen, M. (1984) Neuropharmacological evidence to suggest that the nucleus accumbens and subpllidal region contributes to exploratory locomotion. Behav. Neural Biol. 42, 52–60.
Montague, P. R., Dayan, P., and Sejnowski, T. J. (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947.
Morris, R. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60.
Muller, R. U., Ranck, J. B., Jr., and Taube, J. S. (1996) Head direction cells: properties and functional significance. Curr. Opin. Neurobiol. 6, 196–206.
O’Keefe, J. and Dostrovsky, J. (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175.
Pearl, J. (1999) Causality: Models, reasoning, and inference. Cambridge University Press, Cambridge.
Pfeifer, R. and Scheier, C. (1997) Sensory-motor coordination: The metaphor and beyond. Robot. Auton. Syst. 20, 157–178.
Recce, M. and Harris, K. D. (1996) Memory for places: a navigational model in support of Marr’s theory of hippocampal function. Hippocampus 6, 735–748.
Redish, A. D., Touretzky, D., and Wan, H. S. (1993) Neural representation of space using sinusoidal arrays. Neural Comput. 5, 869–884.
Reeke, G. N., Sporns, O., and Edelman, G. M. (1990) Synthetic neural modeling: The “Darwin” series of recognition automata. Proc. IEEE 78, 1498–1530.
Samsonovich, A. and McNaughton, B. L. (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920.
Schultz, W., Dayan, P., and Montague, P. R. (1997) A neural substrate of prediction and reward. Science 275, 1593–1599.
Schwartz, G. (1978) Estimating the dimension of a model. Ann. Stat. 5, 461–464.
Scoville, W. B. and Milner, B. (1957) Loss of recent memory after bilateral hippocampal lesions. J. Neurochem. 20, 11–21.
Seth, A. K. Causal connectivity analysis of evolved neural networks during behavior. Netw.: Comput. Neural Syst., in press.
Seth, A. K., McKinstry, J. L., Edelman, G. M., and Krichmar, J. L. (2004a). Spatiotemporal processing of whisker input supports texture discrimination by a brain-based device. In: Animals to Animats 8: Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior. Meyer, J. A. (ed.) MIT Press, Cambridge, MA, pp. 130–139.
Seth, A. K., McKinstry, J. L., Edelman, G. M., and Krichmar, J. L. (2004b). Visual Binding Through Reentrant Connectivity and Dynamic Synchronization in a Brain-based Device. Cereb. Cortex 14, 1185–1199.
Shapiro, M. L. and Hetherington, P. A. (1993) A Simple Network Simulates Hippocampal Place Fields: Parametric Analyses and Physiological Predictions. Behav. Neurosci. 107, 34–50.
Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A. (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172.
Sporns, O. and Alexander, W. H. (2002) Neuromodulation and plasticity in an autonomous robot. Neural Netw. 15, 761–774.
Sporns, O., Almassy, N., and Edelman, G. M. (2000) Plasticity in value systems and its role in adaptive behavior. Adapt. Behav. 8, 129–148.
Stewart, M. and Fox, S. E. (1990) Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci. 13, 163–168.
Sutton, R. S. and Barto, A. G. (1990) Time-derivative models of pavlovian reinforcement. In: Learning and Computational Neuroscience: Foundations of Adaptive Networks, Moore, J. (ed.) MIT Press, Cambridge, MA, pp. 497–537.
Taube, J. S. (1998) Head direction cells and the neurophysiological basis for a sense of direction. Prog. Neurobiol. 55, 225–256.
Thierry, A. M., Gioanni, Y., Degenetais, E., and Glowinski, J. (2000) Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10, 411–419.
Tononi, G. and Sporns, O. (2003) Measuring information integration. BMC Neurosci. 4, 31.
Treves, A. (2004) Learning to predict through adaptation. Neuroinformatics 2, 361–366.
Treves, A. and Rolls, E. T. (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391.
Tulving, E. (1972) Episodic and semantic memory. In: Organisation of Memory. Donaldson, W. (ed.) Academic Press, New York, pp. 381–403.
Uchibe, E. and Doya, K. (2004) Competitive-Cooperative-Concurrent Reinforcement Learning with Importance Sampling. In: Animals to Animats 8: Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior. Schaal, S., Ijspeert, A., Billard, A., Vijayakumar, S., Hallam, J., and Meyer, J. A. (eds.) MIT Press, Cambridge, MA.
Ungerleider, L. and Mishkin, M. (1982) Two cortical visual systems. In: Analysis of Visual Behavior, R. Mansfield (ed.) MIT Press, Cambridge, MA, pp. 549–586.
Ungerleider, L. G., and Haxby, J. V. (1994) ‘What’ and ‘where’ in the human brain. Curr. Opin. Neurobiol. 4, 157–165.
Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W., and Mishkin, M. (1997) Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380.
Weng, J. (2004) Developmental robots: Theory and experiments. Int. J. Humanoid Robot. 1, 199–236.
Witter, M. P., Naber, P. A., van Haeften, T., et al. (2000a). Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus 10, 398–410.
Witter, M. P., Wouterlood, F. G., Naber, P. A., and Van Haeften, T. (2000b). Anatomical organization of the parahippocampal-hippocampal network. Ann. NY Acad. Sci. 911, 1–24.
Wray, J. and Edelman, G. M. (1996) A model of color vision based on cortical reentry. Cereb. Cortex 6, 701–716.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Krichmar, J.L., Seth, A.K., Nitz, D.A. et al. Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions. Neuroinform 3, 197–221 (2005). https://doi.org/10.1385/NI:3:3:197
Issue Date:
DOI: https://doi.org/10.1385/NI:3:3:197