[go: up one dir, main page]

Skip to main content

Advertisement

Log in

TREM-1, an Inflammatory Modulator, is Expressed in Hepatocellular Carcinoma Cells and Significantly Promotes Tumor Progression

  • Hepatobiliary Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Triggering receptors expressed on myeloid cells 1 (TREM-1) is a novel molecule that modulates inflammatory responses. Hepatocellular carcinoma (HCC) is a well-known type of inflammation-related cancer. However, TREM-1 expression and its direct effects on HCC cells have not been previously determined.

Methods

Western blotting, quantitative reverse transcription-PCR (qRT-PCR), and immunofluorescence were used to detect TREM-1 expression. TREM-1 upregulation by pcDNA (mammalian expression vector with the CMV promoter) and its downregulation by shRNA (short hairpin RNA) were used to determine the function of this molecule. Transwell, CCK-8, cell cycle, and apoptosis assays were used to detect the effects of TREM-1 on HCC cells. Immunohistochemical staining of samples from a cohort of 322 HCC patients was used to determine the prognostic value of TREM-1.

Results

TREM-1 investigation through Western blot, qRT-PCR, and immunofluorescence analyses revealed that TREM-1 was expressed in HCC cells and tumor tissues. Functional experiments suggested that TREM-1 significantly promoted proliferation, invasion, and inhibited apoptosis of HCC cells. Inflammatory cytokine profiles under TREM-1 up- or downregulation indicated the majority of proinflammation cytokines significantly and positively correlated with TREM-1 expression, including IL-1β, TNF-α, and MCP-1. Western blot analyses revealed that p65, STAT3, ERK, and AKT might be the downstream effectors of TREM-1 signal transduction. High TREM-1 expression correlated significantly with increased recurrence and poorer survival in HCC patients, and it was an independent prognostic factor for recurrence (P = 0.009).

Conclusions

TREM-1 was found to be expressed in HCC cells and to be a prognostic factor for the clinical outcome of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Galli R, Starace D, Busa R, et al. TLR stimulation of prostate tumor cells induces chemokine-mediated recruitment of specific immune cell types. J Immunol. 2010;184(12):6658-69.

    Article  CAS  PubMed  Google Scholar 

  2. Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol. 2000;164(10):4991-5.

    Article  CAS  PubMed  Google Scholar 

  3. Schenk M, Bouchon A, Seibold F, Mueller C. TREM-1–expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest. 2007;117(10):3097-106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Dower K, Ellis DK, Saraf K, Jelinsky SA, Lin LL. Innate immune responses to TREM-1 activation: overlap, divergence, and positive and negative cross-talk with bacterial lipopolysaccharide. J Immunol. 2008;180(5):3520-34.

    Article  CAS  PubMed  Google Scholar 

  5. Ho CC, Liao WY, Wang CY, et al. TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. Am J Respir Crit Care Med. 2008;177(7):763-70.

    Article  CAS  PubMed  Google Scholar 

  6. Sharif O, Knapp S. From expression to signaling: roles of TREM-1 and TREM-2 in innate immunity and bacterial infection. Immunobiology. 2008;213(9-10):701-3.

    Article  CAS  PubMed  Google Scholar 

  7. Chen LC, Laskin JD, Gordon MK, Laskin DL. Regulation of TREM expression in hepatic macrophages and endothelial cells during acute endotoxemia. Exp Mol Pathol. 2008;84(2):145-55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Liao R, Sun TW, Yi Y, et al. Expression of TREM-1 in hepatic stellate cells and prognostic value in hepatitis B-related hepatocellular carcinoma. Cancer Sci. 2012;103(6):984-92.

    Article  CAS  PubMed  Google Scholar 

  9. Zuo T, Wang L, Morrison C, et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell. 2007;129(7):1275-86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang L, Liu R, Li W, et al. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell. 2009;16(4):336-46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cassard L, Cohen-Solal JF, Galinha A, et al. Modulation of tumor growth by inhibitory Fc(gamma) receptor expressed by human melanoma cells. J Clin Invest. 2002;110(10):1549-57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cai Z, Sanchez A, Shi Z, Zhang T, Liu M, Zhang D. Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res. 2011;71(7):2466-75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557-76.

    Article  CAS  PubMed  Google Scholar 

  14. Martin M, Herceg Z. From hepatitis to hepatocellular carcinoma: a proposed model for cross-talk between inflammation and epigenetic mechanisms. Genome Med. 2012;4(1):8.

  15. Nikolaou K, Sarris M, Talianidis I. Molecular pathways: the complex roles of inflammation pathways in the development and treatment of liver cancer. Clin Cancer Res. 2013;19(11):2810-6.

    Article  CAS  PubMed  Google Scholar 

  16. Arzumanyan A, Reis H, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13(2):123-35.

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Tang ZY, Ye SL, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol. 2001;7(5):630-6.

    CAS  PubMed  Google Scholar 

  18. Shi JY, Gao Q, Wang ZC, et al. Margin-infiltrating CD20(+) B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res. 2013;19(21):5994-6005.

    Article  CAS  PubMed  Google Scholar 

  19. Nathan H PT. Staging of intrahepatic cholangiocarcinoma; 2010:269-73.

  20. Vitale A, Morales RR, Zanus G, et al. Barcelona Clinic Liver Cancer staging and transplant survival benefit for patients with hepatocellular carcinoma: a multicentre, cohort study. Lancet Oncol. 2011;12(7):654-62.

    Article  PubMed  Google Scholar 

  21. Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15(3):971-9.

    Article  CAS  PubMed  Google Scholar 

  22. Yang XR, Xu Y, Yu B, et al. CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin Cancer Res. 2009-09-01 2009;15(17):5518-27.

    Article  CAS  PubMed  Google Scholar 

  23. Gao Q, Qiu SJ, Fan J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25(18):2586-93.

    Article  PubMed  Google Scholar 

  24. Gao Q, Zhao YJ, Wang XY, et al. CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma. Cancer Res. 2012;72(14):3546-56.

    Article  CAS  PubMed  Google Scholar 

  25. Arts RJ, Joosten LA, van der Meer JW, Netea MG. TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors. J Leukoc Biol. 2013;93(2):209-15.

    Article  CAS  PubMed  Google Scholar 

  26. Bosco MC, Pierobon D, Blengio F, et al. Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood. 2011;117(9):2625-29.

    Article  CAS  PubMed  Google Scholar 

  27. Fortin CF, Lesur O, Fulop TJ. Effects of TREM-1 activation in human neutrophils: activation of signaling pathways, recruitment into lipid rafts and association with TLR4. Int Immunol. 2007;19(1):41-50.

    Article  CAS  PubMed  Google Scholar 

  28. Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A. The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res. 2012;72(16):3977-86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tessarz AS, Cerwenka A. The TREM-1/DAP12 pathway. Immunol Lett. 2008;116(2):111-6.

    Article  CAS  PubMed  Google Scholar 

  30. Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature. 2001;410(6832):1103-7.

    Article  CAS  PubMed  Google Scholar 

  31. Ornatowska M, Azim AC, Wang X, et al. Functional genomics of silencing TREM-1 on TLR4 signaling in macrophages. Am J Physiol Lung Cell Mol Physiol. 2007;293(6):L1377-84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Klesney-Tait J, Colonna M. Uncovering the TREM-1-TLR connection. Am J Physiol Lung Cell Mol Physiol. 2007;293(6):L1374-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial support by the Major Program of NSFC (No. 81030038), National Key Sci-Tech Project (2012ZX10002011), National Natural Science Foundation of China (Nos. 81272730,81272725, 81372648), FANEDD (No. 201183), Shanghai “Promising Youth Medical Worker” Project (No. 13Y055), and the Fok Ying-Tong Education Foundation (No. 132029). This work was supported by the Major Program of NSFC (No. 81030038), National Key Sci-Tech Project (2012ZX10002011), National Natural Science Foundation of China (Nos. 81272730, 81272725, 81372648), FANEDD (No. 201183), Shanghai “Promising Youth Medical Worker” Project (No. 13Y055), and the Fok Ying-Tong Education Foundation (No. 132029).

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Gao MD, PhD or Jia Fan MD, PhD.

Additional information

Meng Duan, Zhi-Chao Wang, and Xiao-Ying Wang have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, M., Wang, ZC., Wang, XY. et al. TREM-1, an Inflammatory Modulator, is Expressed in Hepatocellular Carcinoma Cells and Significantly Promotes Tumor Progression. Ann Surg Oncol 22, 3121–3129 (2015). https://doi.org/10.1245/s10434-014-4191-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-4191-7

Keywords

Navigation