1" /> " /> 1,3" />
计算机科学 ›› 2019, Vol. 46 ›› Issue (5): 44-49.doi: 10.11896/j.issn.1002-137X.2019.05.006
赵宁博1, 刘伟1, 罗嵘2, 胡顺仁1,3
ZHAO Ning-bo1, LIU Wei1, LUO Rong2, HU Shun-ren1,3
摘要: 控制无线传感器节点的工作模式转换可提高能效,但现有控制策略人工干预较多,且缺少评估能效的指标。结合有限状态机和强化学习算法建立了对模式转换进行控制决策的模型;在此基础上,使用能耗、单位能耗的数据吞吐量两个量化指标,构建了收益差分矩阵以评价转换策略的优劣,构造特征函数并描述其能效,建立了优化模型。通过同样数量的工作模式组合和不同数量的工作模式组合两个层次,对不同转换策略进行了评价。与一般控制策略相比,该模型在降低约57%能耗的同时,只损失了约14%的数据吞吐量,相对于其他研究,其降低了更多能耗,能够延长节点寿命,为节点工作模式控制提供模型支持和理论指导。
中图分类号:
[1]DESAI S S,NENE M J.DANES-Distributed Algorithm forNode Energy-management for Self-organizing Wireless Sensor Networks[C]∥IEEE International Conference on Recent Trends in Electronics,Information & Communication Techno-logy.New York:IEEE Press,2017:1296-1301. [2]LI Z M,CHEN X G.Research and Application of WSN Node Communication Energy Consumption Model Based on Asynchronous MAC Protocol[J].Transactions of Beijing Institute of Technology,2015,35(2):171-175.(in Chinese)李智敏,陈祥光.基于异步MAC协议的WSN节点通信能耗模型的研究及应用[J].北京理工大学学报,2015,35(2):171-175. [3]RANDRIANARISAINA A,PASQUIER O,CHARGE P.Energy Consumption Modeling of Smart Nodes with a Function Approach[C]∥Conference on Design and Architectures for Signal and Image Processing.New York:IEEE Press,2015:1-6. [4]MOKRENKO O,LESECQ S,LOMBARDI W,et al.DynamicPower Management in a Wireless Sensor Network using Predictive Control[C]∥Annual Conference of the IEEE Industrial Electronics Society.New York:IEEE Press,2014:4756-4761. [5]DARGIE W.Dynamic Power Management in Wireless Sensor Networks:State-of-the-Art[J].IEEE Sensors Journal,2012,12(5):1518-1528. [6]BANU G M.MPSoC based Dynamic Power Management inWireless Sensor Networks[C]∥International Conference on Information Communication and Embedded Systems.New York:IEEE Press,2015:1-6. [7]PRASAD Y R V,PACHAMUTHU R.Neural Network Based Short Term Forecasting Engine to Optimize Energy and Big Data Storage Resources of Wireless Sensor Networks[C]∥IEEE Annual Computer Software and Applications Conference.New York:IEEE Press,2015:511-516. [8]RODWAY J,MUSILEK P.Wireless Sensor Networks withPressure based Energy Forecasting:A Simulation Study[C]∥IEEE Canadian Conference on Electrical and Computer Engineering.New York:IEEE Press,2016:1-4. [9]WEI Z C,XU X W,FENG L,et al.Task Scheduling Algorithm Based on Q-Learning and Programming for Sensor Nodes[J].Pattern Recognition and Artificial Intelligence,2016,29(11):1028-1036.(in Chinese)魏振春,徐祥伟,冯琳,等.基于Q学习和规划的传感器节点任务调度算法[J].模式识别与人工智能,2016,29(11):1028-1036. [10]HONG Z,WANG R,LI X L.A Clustering-tree Topology Control Based on the Energy Forecast for Heterogeneous Wireless Sensor Networks[J].IEEE/CAA Journal of Automatica Sinica,2016,3(1):68-77. [11]VINUTHA C B,NALINI N.Energy Aware Optimal Clustering and Reliable Routing based on Markov Model in Wireless Sensor Networks[C]∥International Conference on Wireless Communications,Signal Processing and Networking.New York:IEEE Press,2016:420-425. [12]LIN W T,LAI I W,LEE C H.Distributed Energy Cooperation for Energy Harvesting Nodes using Reinforcement Learning[C]∥Annual International Symposium on Personal,Indoor,and Mobile Radio Communications.New York:IEEE Press,2015:1584-1588. [13]MAO S,TANG H,ZHOU L,et al.An Energy ConservationOptimization Strategy for Wireless Sensor Network Node based on Q-learning[C]∥Asian Control Conference.New York:IEEE Press,2011:938-943. [14]KIANPISHEH S,CHARKARI N M.A New Approachfor PowerManagement in Sensor Node based on Reinforcement?Learning[C]∥International Symposium on Computer Networks and Distributed Systems.New York:IEEE Press,2011:158-163. [15]ALSHEIKH M A,LIN S W,NIYATO D,et al.Machine Lear-ning in Wireless Sensor Networks:Algorithms,Strategies and Applications[J].IEEE Communications Surveys & Tutorials,2014,16(4):1996-2018. |
[1] | 陈乐, 高岭, 任杰, 党鑫, 王祎昊, 曹瑞, 郑杰, 王海. 基于自适应码率移动增强现实应用的能效优化研究 Adaptive Bitrate Streaming for Energy-Efficiency Mobile Augmented Reality 计算机科学, 2022, 49(1): 194-203. https://doi.org/10.11896/jsjkx.201100107 |
[2] | 程云飞, 田红心, 刘祖军. NOMA系统异构网络中联合用户关联和功率控制协同优化 Collaborative Optimization of Joint User Association and Power Control in NOMA Heterogeneous Network 计算机科学, 2021, 48(3): 269-274. https://doi.org/10.11896/jsjkx.191100213 |
[3] | 田献珍, 孙立强, 田振中. 基于蚁群算法的图像重建 Image Reconstruction Based on Ant Colony Algorithm 计算机科学, 2020, 47(11A): 231-235. https://doi.org/10.11896/jsjkx.191000128 |
[4] | 陈晓杰,周清雷,李斌. 基于FPGA的7-Zip加密文档高能效口令恢复方法 Energy-efficient Password Recovery Method for 7-Zip Document Based on FPGA 计算机科学, 2020, 47(1): 321-328. https://doi.org/10.11896/jsjkx.190100027 |
[5] | 赵磊, 周金和. 基于复杂网络内容场的ICN能效优化策略 ICN Energy Efficiency Optimization Strategy Based on Content Field of Complex Networks 计算机科学, 2019, 46(9): 137-142. https://doi.org/10.11896/j.issn.1002-137X.2019.09.019 |
[6] | 叶符明, 李雯婷, 王颖. MC2ETS:移动云计算中一种能效任务调度算法 MC2ETS:An Energy-efficient Tasks Scheduling Algorithm in Mobile Cloud Computing 计算机科学, 2019, 46(6): 135-142. https://doi.org/10.11896/j.issn.1002-137X.2019.06.020 |
[7] | 贾迅, 钱磊, 邬贵明, 吴东, 谢向辉. FPGA应用于高性能计算的研究现状和未来挑战 Research Advances and Future Challenges of FPGA-based High Performance Computing 计算机科学, 2019, 46(11): 11-19. https://doi.org/10.11896/jsjkx.191100500C |
[8] | 罗殊彦, 朱怡安, 曾诚. 嵌入式异构多核处理器核间的通信性能评估与优化 Performance Evaluation and Optimization of Inter-cores Communication for Heterogeneous Multi-core Processor Unit 计算机科学, 2018, 45(6A): 262-265. |
[9] | 李廷元, 王博岩. QoS约束云环境下的工作流能效调度算法 Workflow Energy-efficient Scheduling Algorithm in Cloud Environment with QoS Constraint 计算机科学, 2018, 45(6A): 304-309. |
[10] | 王自强, 林辉. 无线可充电传感网的高能效移动充电策略 High Energy Efficient Mobile Charging Strategy in Wireless Rechargeable Sensor Networks 计算机科学, 2018, 45(11A): 315-319. |
[11] | 朱江, 雷云, 王雁. 认知无线传感器网络中基于稳定性的能效路由协议 Stability Based Energy-efficient Routing Protocol in Cognitive Wireless Sensor Networks 计算机科学, 2018, 45(11): 97-102. https://doi.org/10.11896/j.issn.1002-137X.2018.11.014 |
[12] | 李浩君,杜兆宏,邱飞岳. 基于混合遗传算法的任务驱动分组优化研究 Optimized Research for Task-driven Grouping Based on Hybrid Genetic Algorithm 计算机科学, 2017, 44(Z6): 105-108. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.022 |
[13] | 邢文凯,高雪霞,侯小毛,翟萍. 云计算环境下的模糊解耦能效优化算法研究 Research on Fuzzy Decoupling Energy Efficiency Optimization Algorithm in Cloud Computing Environment 计算机科学, 2017, 44(12): 75-79. https://doi.org/10.11896/j.issn.1002-137X.2017.12.015 |
[14] | 郭荣佐,郭 进,黎 明. 绿色计算与绿色嵌入式系统 Green Computing and Green Embedded Systems 计算机科学, 2015, 42(8): 13-21. |
[15] | 马晨明,王万良,洪榛. 无线传感器网络中一种改进的能效数据收集协议 Improved Energy Efficient Data Gathering Protocol in Wireless Sensor Network 计算机科学, 2015, 42(2): 65-69. https://doi.org/10.11896/j.issn.1002-137X.2015.02.014 |
|