[go: up one dir, main page]

skip to main content
research-article

Hyperspectral Modeling of Skin Appearance

Published: 08 May 2015 Publication History

Abstract

Exploration of the hyperspectral domain offers a host of new research and application possibilities involving material appearance modeling. In this article, we address these prospects with respect to human skin, one of the most ubiquitous materials portrayed in synthetic imaging. We present the first hyperspectral model designed for the predictive rendering of skin appearance attributes in the ultraviolet, visible, and infrared domains. The proposed model incorporates the intrinsic bio-optical properties of human skin affecting light transport in these spectral regions, including the particle nature and distribution patterns of the main light attenuation agents found within the cutaneous tissues. Accordingly, it accounts for phenomena that significantly affect skin spectral signatures, both within and outside the visible domain, such as detour and sieve effects, that are overlooked by existing skin appearance models. Using a first-principles approach, the proposed model computes the surface and subsurface scattering components of skin reflectance taking into account not only the wavelength and the illumination geometry, but also the positional dependence of the reflected light. Hence, the spectral and spatial distributions of light interacting with human skin can be comprehensively represented in terms of hyperspectral reflectance and BSSRDF, respectively.

Supplementary Material

a31-chen-app.pdf (chen.zip)
Supplemental movie, appendix, image and software files for, Hyperspectral Modeling of Skin Appearance

References

[1]
R. Anderson and J. Parrish. 1982. Optical properties of human skin. In The Science of Photomedicine, J. Regan and J. Parrish, Eds., Plenum Press, 147--194.
[2]
M. Attas, T. Posthumus, B. Schattka, M. Sowa, H. Mantsch, and S. Zhang. 2002. Long-wavelength near-infrared spectroscopic imaging for in-vivo skin hydration measurements. Vibrat. Spectroscopy 28, 37--43.
[3]
G. V. G. Baranoski, T. F. Chen, B. W. Kimmel, E. Miranda, and D. Yim. 2012. On the noninvasive optical monitoring and differentiation of methemoglobinemia and sulfhemoglobinemia. J. Biomed. Optics 17, 9, 097005--1--14.
[4]
G. V. G. Baranoski, T. Dimson, T. F. Chen, B. Kimmel, D. Yim, and E. Miranda. 2012. Rapid dissemination of light transport models on the Web. IEEE Comput. Graph. Appl. 32, 10--15.
[5]
G. V. G. Baranoski and A. Krishnaswamy. 2010. Light and Skin Interactions: Simulations for Computer Graphics Applications. Morgan Kaufmann/Elsevier.
[6]
I. Blank. 1952. Factors which influence the water content of the stratum corneum. J. Investigat. Dermatol. 18, 6, 433--440.
[7]
W. G. Bruls and J. Van Der Leun. 1984. Forward scattering properties of human epidermal layers. Photochem. Photobiol. 40, 2, 231--242.
[8]
W. Butler. 1964. Absorption spectroscopy in vivo: Theory and application. Ann. Rev. Plant Phys. 15, 451--470.
[9]
P. G. Cavalcanti, J. Scharcanski, and G. V. G. Baranoski. 2013. A two-stage approach for discriminating melanocytic skin lesions using standard cameras. Expert. Syst. Appl. 40, 10, 4054--4064.
[10]
M. Chedekel. 1995. Photophysics and photochemistry of melanin. In Melanin: Its Role in Human Photoprotection, M. C. L. Zeise and T. Fitzpatrick, Eds., Valdenmar, 11--22.
[11]
B. Chen, K. Stamnes, and J. Stamnes. 2001. Validity of the diffusion approximation in bio-optical imaging. Appl. Optics 40, 34, 6356--6336.
[12]
T. F. Chen, G. V. G. Baranoski, B. W. Kimmel, and E. Miranda. 2014. Supplementary data for the hyperspectral modeling of skin appearance. NPSG, University of Waterloo, Canada.
[13]
C. Cooksey and D. Allen. 2013. Reflectance measurements of human skin from the ultraviolet to the shortwave infrared (250 nm to 2500 nm). In Proceedings of the SPIE Conference on Active and Passive Signatures (SPIE'13). Vol. 8734.
[14]
K. V. De Graaff. 1995. Human Anatomy, 4th Ed. W. C. Brown Publishers.
[15]
E. D'eon and G. Irving. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30, 4, 56:1--13.
[16]
C. Donner and H. W. Jensen. 2006. A spectral bssrdf for shading human skin. In Proceedings of the 17th Eurographics Workshop on Rendering Techniques (EGSR'06). 409--418.
[17]
C. Donner, T. Weyrich, E. D'eon, R. Ramamoorthi, and S. Rusinkiewicz. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans. Graph. 27, 5, 140:1--12.
[18]
A. Doronin and I. Meglinski. 2011. Online object oriented monte carlo computational tool for needs of the biomedical optics. Biomed. Optics Express 2, 9, 2461--2469.
[19]
J. Dorsey, H. Rushmeier, and F. Sillion. 2007. Digital Modeling of Material Appearance. Morgan Kaufmann/Elsevier, Burlington, MA.
[20]
C. Fredembach, N. Barbuscla, and S. Susstrunk. 2009. Combining visible and near-infrared images for realistic skin smoothing. In Proceedings of the 17th Color and Imaging Conference (CIC'09). 242--247.
[21]
M. Fuchs, V. Blanz, H. Lensch, and H. Seidel. 2005. Reflectance from images: A model-based approach for human faces. IEEE Trans. Visual. Comput. Graph. 11, 3, 296--305.
[22]
J. Fulton. 1997. Utilizing the ultraviolet (uv detect) camera to enhance the appearance of photodamage and other skin conditions. Dermatol. Surgery 23, 163--169.
[23]
A. Ghosh, T. Hawkins, P. Peers, S. Frederiksen, and P. Debevec. 2008. Practical modeling and acquisition of layered facial reflectance. ACM Trans. Graph. 27, 5, 139:1--10.
[24]
D. Greenberg, J. Arvo, E. Lafortune, K. Torrance, J. Ferwerda, B. Walter, B. Trumbore, P. Shirley, S. Pattanaik, and S. Foo. 1997. A framework for realistic image synthesis. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'97). 477--494.
[25]
D. Hamby. 1994. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monitor. Assess. 32, 2, 135--154.
[26]
D. Hamby. 1995. A comparison of sensitivity analysis techniques. Health Phys. 68, 195--204.
[27]
P. Hanrahan and W. Krueger. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'93). 165--174.
[28]
M. Hansen, G. Atkinson, L. Smith, and M. Smith. 2010. 3D face reconstructions from photometric stereo using near infrared and visible light. Comput. Vis. Image Understand. 114, 942--951.
[29]
A. Hennessy, C. Oh, B. Diffey, K. Wakamatsu, S. Ito, and J. Rees. 2005. Eumelanin and pheomelanin concentrations in human epidermis before and after uvb irradiation. Pigment Cell Res. 18, 220--223.
[30]
A. Hielscher, S. Jacques, L. Wang, and F. Tittel. 1995. The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues. Phys. Med. Biol. 40, 1957--1975.
[31]
R. Hunter and R. Harold. 1987. The Measurement of Appearance, 2nd ed. John Wiley and Sons.
[32]
T. Igarashi, K. Nishino, and S. K. Nayar. 2007. The appearance of human skin: A survey. Foundat. Trends. Comput. Graph. Vis. 3, 1, 1--95.
[33]
S. L. Jacques. 1996. Origins of tissue optical properties in the uva, visible, and nir regions. OSA TOPS Adv. Optical Imag. Photon Migrat. 2, 364--369.
[34]
S. L. Jacques, C. A. Alter, and S. A. Prahl. 1987. Angular dependence of HeNe laser light scattering by human dermis. Lasers Life Sci. 1, 309--333.
[35]
J. Jacquez, J. Huss, W. Mckeehan, J. Dimitroff, and H. Kuppenhein. 1955a. Spectral reflectance of human skin in the region 0.7-2.6 μ. J. Appl. Physiol. 8, 297--299.
[36]
J. Jacquez, J. Huss, W. Mckeehan, J. Dimitroff, and H. Kuppenhein. 1955b. Spectral reflectance of human skin in the region 235--700 mμ. J. Appl. Physiol. 8, 212--214.
[37]
J. Jimenez, T. Scully, N. Barbosa, C. Donner, X. Alvarez, T. Vieira, P. Matts, V. Orvalho, D. Gutierrez, and T. Weyrich. 2010. A practical appearance model for dynamic facial color. ACM Trans. Graph. 29, 6, 141:1--10.
[38]
M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, R. Prum, and D. Brady. 2012. 3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graph. 31, 4, 38:1--11.
[39]
B. W. Kimmel and G. V. G. Baranoski. 2007. A novel approach for simulating light interaction with particulate materials: Application to the modeling of sand spectral properties. Optics Express 15, 15, 9755--9777.
[40]
N. Kollias, R. M. Sayre, L. Zeise, and M. R. Chedekel. 1991. Photoprotection by melanin. J. Photochem. Photobiol. B9, 2, 135--60.
[41]
A. Krishnaswamy and G. V. G. Baranoski. 2004a. A biophysically-based spectral model of light interaction with human skin. Comput. Graph. Forum 23, 3, 331--340.
[42]
A. Krishnaswamy and G. V. G. Baranoski. 2004b. Combining a shared-memory high performance computer and a heterogeneous cluster for the simulation of light interaction with human skin. In Proceedings of the 16th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'04). P. N. J. Gaudiot, M. L. Pilla, and S. Song, Eds, IEEE Computer Society, 166--171.
[43]
P. Latimer. 1984. A wave-optics effect which enhances light absorption by chlorophyll in vivo. Photochem. Photobiol. 40, 2, 193--199.
[44]
T. S. Lister. 2013. Simulating the color of port wine stain skin. Ph.D. thesis, University of Southampton, UK http://eprints.soton.ac.uk/352088/1.hasCoversheetVersion/Lister.pdf.
[45]
H. Mahler, J. Kulik, F. Gibbons, M. Gerrad, and J. Harrel. 2003. Effects of appearance-based interventions on sun protection intentions and self-reported behaviors. Health Psychol. 22, 2, 199--209.
[46]
S. Marschner, S. H. Westin, E. Lafortune, K. Torrance, and D. Greenberg. 1999. Reflectance measurements of human skin. Tech. rep. PCG-99-2, Program of Computer Graphics, Cornell University.
[47]
E. J. Mccartney. 1976. Optics of the Atmosphere: Scattering by Molecules and Particles. John Wiley and Sons, New York.
[48]
S. Merillou and D. Ghazanfarpour. 2008. A survey of aging and weathering phenomena in computer graphics. Comput. Graph. 32, 2, 159--174.
[49]
Natural Phenomena Simulation Group (NPSG). 2014. Run hylios online. School of Computer Science, University of Waterloo, Ontario, Canada. http://www.npsg.uwaterloo.ca/models/hylios.php.
[50]
C. Ng and L. Li. 2001. A multi-layered reflection model of natural human skin. In Proceedings of the Computer Graphics International Conference (CGI'01). 249--256.
[51]
F. Nicodemus, J. Richmond, J. Hsia, I. Ginsberg, and T. Limperis. 1992. Geometrical considerations and nomenclature for reflectance. In Physics-Based Vision Principles and Practice: Radiometry, L. Wolff, S. Shafer, and G. Healey, Eds. Jones and Bartlett, Boston, 94--145.
[52]
K. Nielsen, L. Zhao, J. Stamnes, K. Stamnes, and J. Moan. 2004. Reflectance spectra of pigmented and nonpigmented skin in the uv spectral region. Photochem. Photobiol. 80, 450--455.
[53]
K. P. Nielsen, L. Zhao, J. J. Stamnes, K. Stamnes, and J. Moan. 2006. The importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes. J. Photochem. Photobio. B. 82, 3, 194--198.
[54]
A. S. Nunez. 2009. A physical model of human skin and its application for search and rescue. Ph.D. thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
[55]
R. L. Olson, J. Gaylor, and M. A. Everett. 1973. Skin color, melanin, and erythema. Arch. Dermatol. 108, 4, 541--544.
[56]
M. Pathak. 1995. Functions of melanin and protection by melanin. In Melanin: Its Role in Human Photoprotection, M. C. L. Zeise and T. Fitzpatrick, Eds, Valdenmar, 125--134.
[57]
S. Prahl. 1988. Light transport in tissue. Ph.D. thesis, The University of Texas at Austin. http://omlc.org/∼prahl/pubs/pdf/prahl88.pdf.
[58]
D. Sandidge. 2009. Digital Infrared Photography Photo Workshop. Wiley.
[59]
P. Schroeder, J. Haendeler, and J. Krutmann. 2008. The role of infrared radiation in photoaging of skin. Experimen. Gerontol. 43, 629--632.
[60]
J. Stam. 2001. An illumination model for a skin layer bounded by rough surfaces. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques (Eurographics'01). Springer, 39--52.
[61]
M. Stone. 2003. A Field Guide to Digital Color. AK Peters, Natick, MA.
[62]
G. Szabo, A. Gerald, M. Pathak, and T. B. Fitzpatrick. 1969. Racial differences in the fate of melanosomes in human epidermis. Nature 222, 5198, 1081--1082.
[63]
T. S. Trowbridge and K. P. Reitz. 1975. Average irregularity representation of a rough surface for ray reflection. J. Optical Soc. Amer. 65, 5, 531--536.
[64]
N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyabe. 2000. Mapping pigmentation in human skin by multi- visible-spectral imaging by inverse optical scattering technique. In Proceedings of the 8th IS&T/SID Color Imaging Conference (CIC'00). 81--84.
[65]
V. Tuchin. 2007. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. SPIE.
[66]
M. Vrhel, R. Gershon, and L. Iwan. 1994. Measurement and analysis of object reflectance spectra. Color Res. Appl. 19, 1, 4--9.
[67]
L. Wang, S. Jacques, and L. Zheng. 1995. MCML -- Monte Carlo modelling of light transport in multi-layered tissues. Comput. Methods Prog. Biomed. 47, 131--146.
[68]
T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C. Tu, J. Mcandless, J. Lee, A. Ngan, H. W. Jensen, and M. Gross. 2006. Analysis of human faces using a measurement-based skin reflectance model. In Proceedings of the 33rd International Conference and Exhibition on Computer Graphics and Interactive Techniques (SIGGRAPH'06). ACM Press, New York, 1013--1024.
[69]
M. Yang, V. Tuchin, and A. Yaroslavsky. 2009. Principles of light-skin interactions. In Light-Based Therapies for Skin of Color, E. Baron, Ed., Springer, 1--44.
[70]
D. Yim, G. V. G. Baranoski, B. W. Kimmel, T. F. Chen, and E. Miranda. 2012. A cell-based light interaction model for human blood. Comput. Graph. Forum 31, 2, 845--854.
[71]
A. R. Young. 1997. Chromophores in human skin. Phys. Med. Biol. 42, 5, 789.

Cited By

View all
  • (2024)DressCode: Autoregressively Sewing and Generating Garments from Text GuidanceACM Transactions on Graphics10.1145/365814743:4(1-13)Online publication date: 19-Jul-2024
  • (2024)Computational Homogenization for Inverse Design of Surface-based InflatablesACM Transactions on Graphics10.1145/365812543:4(1-18)Online publication date: 19-Jul-2024
  • (2024)Diffusion Texture PaintingACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657458(1-12)Online publication date: 13-Jul-2024
  • Show More Cited By

Index Terms

  1. Hyperspectral Modeling of Skin Appearance

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 34, Issue 3
    April 2015
    152 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2774971
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 May 2015
    Accepted: 01 December 2014
    Received: 01 October 2014
    Published in TOG Volume 34, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Material appearance modeling
    2. hyperspectral imaging
    3. light transport
    4. rendering
    5. visualization

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • NSERC Discovery

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)62
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 09 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)DressCode: Autoregressively Sewing and Generating Garments from Text GuidanceACM Transactions on Graphics10.1145/365814743:4(1-13)Online publication date: 19-Jul-2024
    • (2024)Computational Homogenization for Inverse Design of Surface-based InflatablesACM Transactions on Graphics10.1145/365812543:4(1-18)Online publication date: 19-Jul-2024
    • (2024)Diffusion Texture PaintingACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657458(1-12)Online publication date: 13-Jul-2024
    • (2024)Practical Measurement and Neural Encoding of Hyperspectral Skin Reflectance2024 International Conference on 3D Vision (3DV)10.1109/3DV62453.2024.00116(1301-1309)Online publication date: 18-Mar-2024
    • (2024)The coupling effect between skin strain and blood condition on its reflectance spectrum in-vivoOptics & Laser Technology10.1016/j.optlastec.2024.110990176(110990)Online publication date: Sep-2024
    • (2023)Computational Design of Flexible Planar MicrostructuresACM Transactions on Graphics10.1145/361839642:6(1-16)Online publication date: 5-Dec-2023
    • (2023)Neural Metamaterial Networks for Nonlinear Material DesignACM Transactions on Graphics10.1145/361832542:6(1-13)Online publication date: 5-Dec-2023
    • (2023)Exploring Long-Term Mediated Relations with a Shape-Changing Thing: A Field Study of coMorphing StoolProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581140(1-14)Online publication date: 19-Apr-2023
    • (2023)InfinitePaint: Painting in Virtual Reality with Passive Haptics Using Wet Brushes and a Physical Proxy CanvasProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580927(1-13)Online publication date: 19-Apr-2023
    • (2023)A Hyperspectral Space of Skin Tones for Inverse Rendering of Biophysical Skin PropertiesComputer Graphics Forum10.1111/cgf.1488742:4Online publication date: 26-Jul-2023
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media