[go: up one dir, main page]

skip to main content
research-article

Indemics: An interactive high-performance computing framework for data-intensive epidemic modeling

Published: 01 January 2014 Publication History

Abstract

We describe the design and prototype implementation of Indemics (_Interactive; Epi_demic; _Simulation;)—a modeling environment utilizing high-performance computing technologies for supporting complex epidemic simulations. Indemics can support policy analysts and epidemiologists interested in planning and control of pandemics. Indemics goes beyond traditional epidemic simulations by providing a simple and powerful way to represent and analyze policy-based as well as individual-based adaptive interventions. Users can also stop the simulation at any point, assess the state of the simulated system, and add additional interventions. Indemics is available to end-users via a web-based interface.
Detailed performance analysis shows that Indemics greatly enhances the capability and productivity of simulating complex intervention strategies with a marginal decrease in performance. We also demonstrate how Indemics was applied in some real case studies where complex interventions were implemented.

References

[1]
M. Ajelli, B. Gonçalves, D. Balcan, V. Colizza, H. Hu, J. Ramasco, S. Merler, and A. Vespignani. 2010. Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models. BMC Infectious Diseases 10, 190 (2010).
[2]
R. M. Anderson and R. M. May. 1991. Infectious Diseases of Humans. Oxford University Press, Oxford.
[3]
N. Bailey. 1975. The Mathematical Theory of Infectious Diseases and Its Applications. Hafner Press, New York.
[4]
A. Barrat, M. Barthelemy, and A. Vespignani. 2008. Dynamical Processes in Complex Networks. Cambridge University Press.
[5]
C. L. Barrett, K. Bisset, J. Chen, S. Eubank, B. Lewis, V. S. A. Kumar, M. V. Marathe, and H. S. Mortveit. 2009. Interactions among human behavior, social networks, and societal infrastructures: A case study in computational epidemiology. In Fundamental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, Chapter 18, S. S. Ravi and Sandeep K. Shukla (Eds.). Springer, Netherlands, 477--507.
[6]
C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng, and M. V. Marathe. 2008. EpiSimdemics: An efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In Proceedings of the ACM/IEEE Conference on Supercomputing. 290--294.
[7]
K. Bisset, J. Chen, C. J. Kuhlman, V. S. A. Kumar, and M. V. Marathe. 2011. Interaction-based HPC modeling of social, biological, and economic contagions over large networks. In Proceedings of Winter Simulation Conference (WSC). 2933--2947.
[8]
K. R. Bisset, J. Chen, X. Feng, V. S. A. Kumar, and M. V. Marathe. 2009. EpiFast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In Proceedings of the 23rd International Conference on Supercomputing. 430--439.
[9]
K. R. Bisset, X. Feng, M. V. Marathe, and S. M. Yardi. 2009. Modeling interaction between individuals, social networks and public policy to support public health epidemiology. In Winter Simulation Conference. 2020--2031.
[10]
CDC. 2010. Updated CDC Estimates of 2009 H1N1 Influenza Cases, Hospitalizations and Deaths in the United States, April 2009--April 10, 2010. Retrieved September 29, 2011 from http://www.cdc.gov/h1n1flu/estimates_2009_h1n1.htm.
[11]
D. L. Chao, M. E. Halloran, V. Obenchain, and I. M. Longini Jr. 2010. FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Computational Biology 6, 1 (2010).
[12]
V. Colizza, A. Barrat, M. Barthelemy, A. Valleron, and A. Vespignani. 2007. Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLoS Medicine 4 (2007), 95.
[13]
V. Colizza, A. Barrat, M. Barthelemy, and A. Vespignani. 2005. Prediction and predictability of global epidemics: the role of the airline transportation network. Arxiv preprint q-bio.OT/0507029 (2005).
[14]
S. Deodhar, K. Bisset, J. Chen, Y. Ma, and M. V. Marathe. 2012. Enhancing software capability through integration of distinct software in epidemiological systems. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium. 171--180.
[15]
R. Dobbs, S. Smit, J. Remes, J. Manyika, C. Roxburgh, and A. Restrepo. 2011. Urban world: Mapping the economic power of cities, McKinsey Global Institute. Retrieved from http://www.mckinsey.com/insights/mgi/research/urbanization/urban_world.
[16]
S. B. Edlund, M. A. Davis, and J. H. Kaufman. 2010. The spatiotemporal epidemiological modeler. In Proceedings of the 1st ACM International Health Informatics Symposium. 817--820.
[17]
S. G. Eubank. 2002. Scalable, efficient epidemiological simulation. In ACM Symposium on Applied Computing. Madrid, Spain, 139--145.
[18]
N. M. Ferguson, D. A. T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai1, S. Iamsirithaworn, and D. S. Burke. 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437 (2005), 209--214.
[19]
N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, and D. S. Burke. 2006. Strategies for mitigating an influenza pandemic. Nature 442 (2006), 448--452.
[20]
N. M. Ferguson, M. J. Keeling, W. J. Edmunds, R. Gani, B. T. Grenfell, R. M. Anderson, and S. Leach. 2003. Planning for smallpox outbreaks. Nature 425 (2003), 681--685.
[21]
H. V. Fineberg and M. E. Wilson. 2009. Epidemic science in real time. Science 324 (May 2009), 987.
[22]
C. Fraser, C. A. Donnelly, S. Cauchemez, and W. P. Hanage et al. 2009. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science 324, 5934 (2009), 1557--1561.
[23]
T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken. 2006. Mitigation strategies for pandemic influenza in the United States. Proceedings of the National Academy of Sciences 103, 15 (2006), 5935--5940.
[24]
E. Goldstein, K. Paur, C. Fraser, E. Kenah, J. Wallinga, and M. Lipsitch. 2009. Reproductive numbers, epidemic spread and control in a community of households. Mathematical Biosciences 221, 1 (2009), 11--25.
[25]
E. Halloran, N. M. Ferguson, S. Eubank, Jr. I. M. Longini, D. A. T. Cummings, B. Lewis, S. Xu, C. Fraser, A. Vullikanti, T. C. Germann, D. Wagener, R. Beckman, K. Kadau, C. Barrett, C. A. Macken, D. S. Burke, and P. Cooley. 2008. Modeling targeted layered containment of an influenza pandemic in the United States. Proceedings of the National Academy of Sciences 105 (2008), 4639--4644.
[26]
G. Heber and J. Gray. 2007a. Supporting finite element analysis with a relational database backend, part I: There is life beyond files. CoRR abs/cs/0701159 (2007).
[27]
G. Heber and J. Gray. 2007b. Supporting finite element analysis with a relational database backend, part II: Database design and access. CoRR abs/cs/0701160 (2007).
[28]
J. A. P. Heesterbeek. 2002. A brief history of R0 and a recipe for its calculation. Acta Biotheoretica 50, 3 (2002), 189--204.
[29]
J. M. Heffernan, R. J. Smith, and L. M. Wahl. 2005. Perspectives on the basic reproductive ratio. Journal of the Royal Society Interface 2, 4 (2005), 281--293.
[30]
H. W. Hethcote. 2000. The mathematics of infectious diseases. SIAM Rev. 42, 4 (Dec. 2000), 599--653.
[31]
L. Hufnagel, D. Brockmann, and T. Geisel. 2004. Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences 101 (2004), 15124--15129.
[32]
M. J. Keeling and K. T. D. Eames. 2005. Networks and epidemic models. J. R. Soc. Interface 2 (2005), 295.
[33]
M. Van Kerkhove and N. Ferguson. 2012. Epidemic and intervention modelling—a scientific rationale for policy decisions? Lessons from the 2009 influenza pandemic. Bull World Health Organ. (2012), 306--10.
[34]
W. O. Kermack and A. G. McKendrick. 1927. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A 115, 772 (1927), 700--721.
[35]
S. Liao, Y. Ma, J. Chen, and A. Marathe. 2012. Paid sick-leave: Is it a good way to control epidemics? In the 2nd International Conference on Complex Sciences: Theory and Applications (COMPLEX).
[36]
M. Lipsitch, L. Finelli, R. T. Heffernan, G. M. Leung, and S. C. Redd. 2011. Improving the evidence base for decision making during a pandemic: The example of 2009 Influenza A H1N1. Biosecur Bioterror. 9, 2 (2011), 89--115.
[37]
Y. Ma, K. R. Bisset, J. Chen, S. Deodhar, and M. V. Marathe. 2011. Efficient implmentation of complex interventions in large scale epidemic simulations. In Proceedings of the Winter Simulation Conference.
[38]
A. Marathe, B. Lewis, C. Barrett, J. Chen, M. Marathe, S. Eubank, and Y. Ma. 2011. Comparing effectiveness of top-down and bottom-up strategies in containing influenza. PLoS ONE 6, 9 (Sept. 2011), e25149.
[39]
S. Merler and M. Ajelli. 2010. The role of population heterogeneity and human mobility in the spread of pandemic influenza. Processings of Royal Society 277, 1681 (2010), 557--565.
[40]
L. A. Meyers. 2007. Contact network epidemiology: Bond percolation applied to infectious disease prediction and control. Bulletin of The American Mathematical Society 44 (2007), 63--86.
[41]
L. A. Meyers and N. Dimitrov. 2010. Mathematical approaches to infectious disease prediction and control. INFORMS, Tutorials in OPerations Research (2010).
[42]
L. A. Meyers, M. E. J. Newman, and B. Pourbohloul. 2006. Predicting epidemics on directed contact networks. Journal of Theoretical Biology 240, 3 (2006), 400--418.
[43]
M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. 2000. Complexity of finite-horizon Markov decision process problems. J. ACM 47, 4 (2000), 681--720.
[44]
M. Newman, I. Jensen, and R. M. Ziff. 2002. Percolation and epidemics in a two-dimensional small world. Physical Review E 65 (2002), 021904.
[45]
J. Parker and J. M. Epstein. 2012. A distributed platform for global-scale agent-based models of disease transmission. ACM Transactions on Modeling and Computer Simulation 22, 1 (2012).
[46]
R. Pastor-Satorras and A. Vespignani. 2002. Epidemics and immunization in scale-free networks. In Handbook of Graphs and Networks, S. Bornholdt and H. G. Schuster (Eds.). Wiley-VCH, Berlin.
[47]
K. S. Perumalla and S. K. Seal. 2011. Discrete event modeling and massively parallel execution of epidemic outbreak phenomena. SIMULATION (2011).
[48]
L. A. Rvachev and I. M. Longini. 1985. A mathematical model for the global spread of influenza. Mathematical Biosciences 17 (1985), 3--22.
[49]
Y. Simmhan, R. Barga, C. van Ingen, M. Nieto-Santisteban, L. Dobos, N. Li, M. Shipway, A. S. Szalay, S. Werner, and J. Heasley. 2009. GrayWulf: Scalable software architecture for data intensive computing. In HICSS. 1--10.
[50]
G. Ch. Sirakoulis, I. Karafyllidis, and A. Thanailakis. 2000. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling 133, 3 (2000), 209--223.
[51]
B. Sowell, A. Demers, J. Gehrke, N. Gupta, H. Li, and W. White. 2009. From Declarative Languages to Declarative Processing in Computer Games. In CIDR.
[52]
E. Vynnycky and R. G. White. 2010. An Introduction to Infectious Disease Modelling. Oxford University Press.
[53]
G. Wang, M. Salles, B. Sowell, X. Wang, T. Cao, A. Demers, J. Gehrke, and W. White. 2010. Behavioral Simulations in MapReduce. Proceedings of the VLDB Endowment 3, 1 (2010), 952--963.
[54]
S. H. White, A. M. del Rey, and G. R. Sánchez. 2007a. Modeling epidemics using cellular automata. Appl. Math. Comput. 186, 1 (2007), 193--202.
[55]
W. M. White, A. J. Demers, C. Koch, J. Gehrke, and R. Rajagopalan. 2007b. Scaling games to epic proportion. In SIGMOD Conference. 31--42.
[56]
WHO. 2004. WHO consultation on priority public health interventions before and during an influenza pandemic. Available at http://www.who.int/csr/disease/avian_influenza/consultation/en/.
[57]
J. T. Wu and B. J. Cowling. 2011. The use of mathematical models to inform influenza pandemic preparedness and response. Experimental Biology and Medicine 236, 8 (2011), 955--961.

Cited By

View all
  • (2024)Role of heterogeneity: National scale data-driven agent-based modeling for the US COVID-19 Scenario Modeling HubEpidemics10.1016/j.epidem.2024.10077948(100779)Online publication date: Sep-2024
  • (2023)Data-driven scalable pipeline using national agent-based models for real-time pandemic response and decision supportInternational Journal of High Performance Computing Applications10.1177/1094342022112703437:1(4-27)Online publication date: 1-Jan-2023
  • (2023)Using linear regression metamodels for evaluating interventions in an individual-based influenza epidemic modelSimulation Modelling Practice and Theory10.1016/j.simpat.2023.102772126(102772)Online publication date: Jul-2023
  • Show More Cited By

Index Terms

  1. Indemics: An interactive high-performance computing framework for data-intensive epidemic modeling

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Modeling and Computer Simulation
      ACM Transactions on Modeling and Computer Simulation  Volume 24, Issue 1
      Special issue on simulation in complex service systems
      January 2014
      125 pages
      ISSN:1049-3301
      EISSN:1558-1195
      DOI:10.1145/2578853
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 January 2014
      Accepted: 01 May 2013
      Revised: 01 April 2013
      Received: 01 October 2011
      Published in TOMACS Volume 24, Issue 1

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Parallel computation
      2. infectious disease
      3. interactive computation
      4. modeling and simulation
      5. network dynamics

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)9
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 09 Oct 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Role of heterogeneity: National scale data-driven agent-based modeling for the US COVID-19 Scenario Modeling HubEpidemics10.1016/j.epidem.2024.10077948(100779)Online publication date: Sep-2024
      • (2023)Data-driven scalable pipeline using national agent-based models for real-time pandemic response and decision supportInternational Journal of High Performance Computing Applications10.1177/1094342022112703437:1(4-27)Online publication date: 1-Jan-2023
      • (2023)Using linear regression metamodels for evaluating interventions in an individual-based influenza epidemic modelSimulation Modelling Practice and Theory10.1016/j.simpat.2023.102772126(102772)Online publication date: Jul-2023
      • (2023)Asymptotic elimination of partially continuous aggregation functions in directed graphical modelsInformation and Computation10.1016/j.ic.2023.105061293:COnline publication date: 1-Aug-2023
      • (2022)Iterative data-driven forecasting of the transmission and management of SARS-CoV-2/COVID-19 using social interventions at the county-levelScientific Reports10.1038/s41598-022-04899-412:1Online publication date: 18-Jan-2022
      • (2022)Functional Lifted Bayesian Networks: Statistical Relational Learning and Reasoning with Relative FrequenciesInductive Logic Programming10.1007/978-3-031-55630-2_11(142-156)Online publication date: 28-Sep-2022
      • (2021)Towards a Framework for High-Performance Simulation of Livestock Disease Outbreak: A Case Study of Spread of African Swine Fever in VietnamAnimals10.3390/ani1109274311:9(2743)Online publication date: 19-Sep-2021
      • (2021)Distributed messaging and light streaming system for combating pandemicsJournal of Ambient Intelligence and Humanized Computing10.1007/s12652-021-03328-014:2(773-787)Online publication date: 10-Jun-2021
      • (2020)Usage of Publicly Available Software for Epidemiological Trends ModellingCybernetics and Computer Technologies10.34229/2707-451X.20.3.4(32-42)Online publication date: 5-Nov-2020
      • (2020)All-words Word Sense Disambiguation for Russian Using Automatically Generated Text CollectionCybernetics and Information Technologies10.2478/cait-2020-004920:4(90-107)Online publication date: 1-Nov-2020
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media