[go: up one dir, main page]

Skip to main content
Log in

Multivariable optimization: Quantum annealing and computation

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Recent developments in quantum annealing techniques have been indicating potential advantage of quantum annealing for solving NP-hard optimization problems. In this article we briefly indicate and discuss the beneficial features of quantum annealing techniques and compare them with those of simulated annealing techniques. We then briefly discuss the quantum annealing studies of some model spin glass and kinetically constrained systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 4598 (1983)

    Article  MathSciNet  Google Scholar 

  2. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

  3. P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)

    Article  ADS  Google Scholar 

  4. D. Thirumalai, Q. Li, T.R. Kirkpatrick, J. Phys. A: Math. Gen. 22, 3339 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. B.K. Chakrabarti, A. Dutta, P. Sen, Quantum Ising Phases & Transitions in Transverse Ising Models (Springer, Heidelberg, 1996)

  6. A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, D.J. Doll, Chem. Phys. Lett. 219, 343 (1994)

    Article  ADS  Google Scholar 

  7. T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998)

    Article  ADS  Google Scholar 

  8. J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)

    Article  ADS  Google Scholar 

  9. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Ludgren, D. Preda, Science 292, 472 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Science 295, 2427 (2002)

    Article  ADS  Google Scholar 

  11. A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. B. Altshuler, H. Kroviand, J. Roland, Proc. Natl. Acad. Sci. USA 107, 28 (2010)

    Article  Google Scholar 

  13. I. Hen, A.P. Young, Phys. Rev. E 84, 061152 (2011)

    Article  ADS  Google Scholar 

  14. A. Das, B.K. Chakrabarti, R.B. Stinchcombe, Phys. Rev. E 72, 026701 (2005)

    Article  ADS  Google Scholar 

  15. G.E. Santoro, E. Tosatti, J. Phys. A 39, R393 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. S. Morita, H. Nishimori, J. Math. Phys. 49, 125210 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. C.A. Torres, D.M. Silevitch, G. Aeppli, T.F. Rosenbaum, Phys. Rev. Lett. 101, 057201 (2008)

    Article  ADS  Google Scholar 

  18. M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Nature 473, 194 (2011)

    Article  ADS  Google Scholar 

  19. V.N. Smelyanskiy, E.G. Rieffel, S.I. Knysh, C.P. Williams, M.W. Johnson, M.C. Thom, K.L.P.W.G. Macready, A near-term quantum computing approach for hard computational problems in space exploration [arXiv:1204.2821] (2012)

  20. Y. Yamamoto, K. Takata, S. Utsunomiya, New Gener. Comput. 30, 327 (2012)

    Article  Google Scholar 

  21. A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Sci. Rep. 2, 571 (2012)

    Article  ADS  Google Scholar 

  22. S. Suzuki, J.-i. Inoue, B.K. Chakrabarti, Quantum Ising Phases & Transitions in Transverse Ising Models, Chapter 8 on Quantum annealing (Springer, Heidelberg, 2013), p. 225

  23. I. Bose, Sci. Cul. 79, 381 (2013)

    Google Scholar 

  24. A. Ghosh, S. Mukherjee, Sci. Cult. 79, 485 (2013), [arXiv:1310.1339v4]

    Google Scholar 

  25. S. Boixo, T.F. Rãnnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Nat. Phys. 10, 218 (2014)

    Article  Google Scholar 

  26. H.G. Katzgraber, F. Hamze, R.S. Andrist, Phys. Rev. 4, 021008 (2014)

    Google Scholar 

  27. E. Cohen, B. Tamir, Int. J. Quantum Inf. 13, 143002 (2014)

    MathSciNet  Google Scholar 

  28. A. Rajak, B.K. Chakrabarti, Indian J. Phys. 88, 951 (2014), [arXiv:1405.3905]

    Article  ADS  Google Scholar 

  29. D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, V. Smelyanskiy, Quantum Optimization of Fully-Connected Spin Glasses [arXiv:1406.7553] (2014)

  30. A. Perdomo-Ortiz, J. Fluegemann, S. Narasimhan, R. Biswas, V. Smelyanskiy, A Quantum Annealing Approach for Fault Detection and Diagnosis of Graph-Based Systems [arXiv:1406.7601] (2014)

  31. E.G. Rieffel, D. Venturelli, B. O’Gorman, M.B. Do, E. Prystay, V. Smelyanskiy, A case study in programming a quantum annealer for hard operational planning problems [arXiv:1407.2887] (2014)

  32. A. Dutta, G. Aeppli, B.K. Chakrabarti, U. Divakaran, T. Rosenbaum, D. Sen, Quantum Phase Transitions in Transverse Field Models: From Statistical Physics to Quantum Information, Chapter 15 on quantum annealing & computation (Cambridge University Press, 2014) (in press)

  33. L.K. Grover, Am. J. Phys. 69, 769 (2001)

    Article  ADS  Google Scholar 

  34. J. Roland, N.J. Cerf, Phys. Rev. A 65, 042308 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Mukherjee or B.K. Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Chakrabarti, B. Multivariable optimization: Quantum annealing and computation. Eur. Phys. J. Spec. Top. 224, 17–24 (2015). https://doi.org/10.1140/epjst/e2015-02339-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02339-y

Keywords

Navigation