[go: up one dir, main page]

Skip to main content
Log in

Hawking radiation for non-asymptotically flat dilatonic black holes using gravitational anomaly

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The d-dimensional scalar field action may be reduced, in the background geometry of a black hole, to a two-dimensional effective action. In the near-horizon region, it appears a gravitational anomaly: the energy-momentum tensor of the scalar field is not conserved anymore. This anomaly is removed by introducing a term related to the Hawking temperature of the black hole. Even if the temperature term introduced is not covariant, a gauge transformation may restore the covariance. We apply this method to compute the temperature of the dilatonic non-asymptotically flat black holes. We compare the results with those obtained through other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  2. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  3. R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, 1982)

    Google Scholar 

  4. S.A. Fulling, Aspects of Quantum Field Theory in Curved Space- Time (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  5. D. Page, Phys. Rev. D 13, 198 (1976)

    Article  ADS  Google Scholar 

  6. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  7. W.G. Unruh, Phys. Rev. D 14, 3251 (1976)

    Article  ADS  Google Scholar 

  8. S.M. Christensen, S.A. Fulling, Phys. Rev. D 15, 2088 (1977)

    Article  ADS  Google Scholar 

  9. S.W. Hawking, G.T. Horowitz, S.F. Ross, Phys. Rev. D 51, 4302 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Gosh, P. Mitra, Phys. Lett. B 357, 295 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  11. K. Ghoroku, A.L. Larsen, Phys. Lett. B 328, 28 (1994)

    Article  ADS  Google Scholar 

  12. M. Natsuume, N. Sakai, M. Sato, Mod. Phys. Lett. A 11, 1467 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. D. Birmingham, I. Sachs, S. Sen, Phys. Lett. B 413, 281 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  14. K.C.K. Chan, J.H. Horne, R.B. Mann, Nucl. Phys. B 447, 441 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95, 011303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. W.A. Bardeen, B. Zumino, Nucl. Phys. B 244, 421 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  17. L. Alvarez-Gaume, E. Witten, Nucl. Phys. B 234, 269 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Bertlmann, Anomalies in Quantum Field Theory (Oxford University Press, Oxford, 2000)

    Book  MATH  Google Scholar 

  19. R. Bertlmann, E. Kohlprath, Ann. Phys. 288, 137 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. K. Fujikawa, H. Suzuki, Path Integrals and Quantum Anomalies (Oxford University Press, Oxford, 2004)

    Book  MATH  Google Scholar 

  21. E.C. Vagenas, S. Das, J. High Energy Phys. 0610, 025 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Das, S.P. Robinson, E.C. Vagenas, Int. J. Mod. Phys. D 17, 533–539 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A. Zampeli, D. Singleton, E.C. Vagenas, J. High Energy Phys. 1206, 097 (2012)

    Article  ADS  Google Scholar 

  24. S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. Lett. 96, 151302 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. D 74, 044017 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Clément, C. Leygnac, Phys. Rev. D 70, 084018 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Clément, D. Gal’tsov, C. Leygnac, Phys. Rev. D 67, 024012 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  28. K. Ait Moussa, G. Clément, C. Leygnac, Class. Quantum Gravity 20, L277 (2003)

    Article  MATH  Google Scholar 

  29. R. Banerjee, S. Kulkarni, Phys. Lett. B 659, 827–831 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. R. Banerjee, S. Kulkarni, Phys. Rev. D 77, 024018 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Banerjee, Int. J. Mod. Phys. D 17, 2539–2542 (2009)

    Article  ADS  Google Scholar 

  32. G. Clément, J.C. Fabris, G.T. Marques, Phys. Lett. B 651, 54 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. W. Kim, H. Shin, M. Yoon, J. Korean Phys. Soc. 53, 1791–1796 (2008)

    Google Scholar 

  34. K. Murata, J. Soda, Phys. Rev. D 74, 044018 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  35. F.G. Alvarenga, A.B. Batista, J.C. Fabris, G.T. Marques, Phys. Lett. A 320, 83 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. O.B. Zaslavskii, Class. Quantum Gravity 19, 3783 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. S. Deser, R. Jackiw, S. Templeton, Phys. Rev. Lett. 48, 975 (1982)

    Article  ADS  Google Scholar 

  38. S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 140, 372 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  39. A.P. Porfyriadis, Phys. Lett. B 675, 235 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  40. E. Papantonopoulos, P. Skamagoulis, Phys. Rev. D 79, 084022 (2009)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

J.C.F. thanks CNPq and FAPES (Brazil) for partial financial support. G.T.M. thanks CNPq and FAPESPA (Brazil) for partial financial support. We thank Gérard Clément for valuable remarks on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Fabris.

Appendix: The covariant anomaly

Appendix: The covariant anomaly

The anomalies treated in this paper obey strong consistency conditions. For this reason, they are called consistent anomalies. This formulation is based on (4) and (20) which do not transform covariantly under coordinate transformation. For this reason, the new energy-momentum tensor (36) and currents (25) are defined, leading to new anomaly equations, which are now invariant under coordinate and gauge transformations. Hence, we will perform an analysis of covariant equations for the gauge and gravitational anomaly for the metric (19).

Gauge covariant anomaly

Substituting (20) in (25), we obtain,

$$ \nabla_\mu\tilde{J}^\mu=-\frac{e^2}{4\pi\sqrt{-g}} \epsilon^{\mu\nu}F_{\mu\nu} , $$
(60)

which is now gauge invariant.

For the metric (19) equations (60) can be integrated, resulting in

$$ \begin{aligned} &\partial_r\tilde{J}^r(r)=\frac{e^2}{2\pi} \partial_rA_t(r) \\ &\tilde{J}^r(\infty)-\tilde{J}^r(r_H)= \frac{e^2}{2\pi}\bigl(A_t(\infty)-A_t(r_H) \bigr). \end{aligned} $$
(61)

Imposing that \(\tilde{J}^{r}(r_{H})\) is zero over the horizon and that A t (∞) is not zero at infinity, since the metric is not asymptotically flat at the infinity, the charge flux becomes,

(62)

This confirms the universality of the expression for the charge flux, in the asymptotic limit (r→∞), via anomalies.

Covariant gravitational anomaly

The covariant gravitational anomaly is given by the equation [18, 30, 31]

$$ \begin{aligned} &\nabla_\mu\tilde{T}^\mu_\nu= \frac{1}{96\pi}\epsilon_{\mu\nu}\partial^\mu R , \\ &\partial_r\tilde{T}^r_t= \frac{1}{96\pi}f(r)\partial^3_rf(r)= \partial_r\bar{N}^r_t , \end{aligned} $$
(63)

where R is the Ricci scalar and

$$\bar{N}^r_t=\frac{1}{96\pi} \biggl(ff''- \frac{f'^2}{2} \biggr) , $$

where ′=d/dr.

The Ward’s identities for the covariant anomaly case is given by [29, 30]

$$ \nabla_\mu\tilde{T}^\mu_\nu=F_{\mu\nu} \tilde{J}^\mu+\partial_\mu\bar{N}^\mu_\nu . $$
(64)

Using (61), we have

(65)

Through (61) it is possible to obtain the value of the constant d 0 which is −e 2A t (r H )/2π. Hence, after integration of the right hand side of equation (65), we find

where it was used the condition that \(\tilde{T}^{r}_{t}\) is zero over the horizon. Since the metric (19) is not asymptotically flat the term \(\bar{N}^{r}_{t}(\infty)\) is not zero. In this way, a flux of energy and momentum at infinity is defined:

(66)

This confirms (39), showing the universality of the method of calculation of the Hawking temperature via anomalies. Hence, the covariant anomaly method allows also to cancel the anomalies near the horizon, as shown in [30, 31, 40].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabris, J.C., Marques, G.T. Hawking radiation for non-asymptotically flat dilatonic black holes using gravitational anomaly. Eur. Phys. J. C 72, 2214 (2012). https://doi.org/10.1140/epjc/s10052-012-2214-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2214-8

Keywords

Navigation