[go: up one dir, main page]

Skip to main content
Log in

Determination of new electroweak parameters at the ILC – sensitivity to new physics

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

We present a study of the sensitivity of the International Linear Collider (ILC) to electroweak parameters in the absence of a light Higgs boson. In particular, we consider those parameters that have been inaccessible at previous colliders, quartic gauge couplings. Within a generic effective-field theory context we analyze all processes that contain quasi-elastic weak-boson scattering, using complete six-fermion matrix elements in unweighted event samples, fast simulation of the ILC detector, and a multi-dimensional parameter fit of the set of anomalous couplings. The analysis does not rely on simplifying assumptions such as custodial symmetry or approximations such as the equivalence theorem. We supplement this by a similar new study of triple weak-boson production, which is sensitive to the same set of anomalous couplings. Including the known results on triple gauge couplings and oblique corrections, we thus quantitatively determine the indirect sensitivity of the ILC to new physics in the electroweak symmetry-breaking sector, conveniently parameterized by real or fictitious resonances in each accessible spin/isospin channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. For reviews, see C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235 (2003)

  2. C.T. Hill, E.H. Simmons, Phys. Rep. Erratum 390, 553 (2004)

    Article  ADS  Google Scholar 

  3. W. Kilian, P.M. Zerwas, arXiv:hep-ph/0601217

  4. S. Heinemeyer et al., Toward High Precision Higgs-Boson Measurements at the International Linear e+e- Collider, hep-ph/0511332

  5. S. Kraml (ed.), Report of the Workshop on CP Studies and non-standard Higgs physics, hep-ph/0608079

  6. S. Weinberg, Phys. Rev. D 13, 974 (1976)

    Article  ADS  Google Scholar 

  7. L. Susskind, Phys. Rev. D 20, 2619 (1979)

    Article  ADS  Google Scholar 

  8. E. Farhi, L. Susskind, Phys. Rep. 74, 277 (1981)

    Article  ADS  Google Scholar 

  9. R.K. Kaul, Rev. Mod. Phys. 55, 449 (1983)

    Article  ADS  Google Scholar 

  10. S.F. King, Nucl. Phys. Proc. Suppl. 16, 635 (1990)

    Article  ADS  Google Scholar 

  11. K.D. Lane, hep-ph/9401324

  12. S.F. King, Rep. Prog. Phys. 58, 263 (1995)

    Article  ADS  Google Scholar 

  13. K.D. Lane, hep-ph/0007304

  14. S. Dimopoulos, L. Susskind, Nucl. Phys. B 155, 237 (1979)

    Article  ADS  Google Scholar 

  15. E. Eichten, K.D. Lane, Phys. Lett. B 90, 125 (1980)

    Article  ADS  Google Scholar 

  16. S. Dimopoulos, H. Georgi, S. Raby, Phys. Lett. B 127, 101 (1983)

    Article  ADS  Google Scholar 

  17. K.D. Lane, E. Eichten, Phys. Lett. B 222, 274 (1989)

    Article  ADS  Google Scholar 

  18. T. Appelquist, J. Terning, L.C.R. Wijewardhana, Phys. Rev. Lett. 79, 2767 (1997) [arXiv:hep-ph/9706238]

    Article  ADS  Google Scholar 

  19. S. Raby, S. Dimopoulos, L. Susskind, Nucl. Phys. B 169, 373 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  20. H. Georgi, L.J. Hall, M.B. Wise, Phys. Lett. B 102, 315 (1981)

    Article  ADS  Google Scholar 

  21. H. Georgi, L.J. Hall, M.B. Wise, Phys. Lett. B Erratum 104, 499 (1981)

    Article  Google Scholar 

  22. E. Eichten, F. Feinberg, Phys. Lett. B 110, 232 (1982)

    Article  ADS  Google Scholar 

  23. S.P. Martin, Phys. Rev. D 46, 2197 (1992)

    Article  ADS  Google Scholar 

  24. B. Holdom, Phys. Rev. D 24, 1441 (1981)

    Article  ADS  Google Scholar 

  25. M. Bando, K.I. Matumoto, K. Yamawaki, Phys. Lett. B 178, 308 (1986)

    Article  ADS  Google Scholar 

  26. K. Yamawaki, M. Bando, K.-I. Matumoto, Phys. Rev. Lett. 56, 1335 (1986)

    Article  ADS  Google Scholar 

  27. T. Appelquist, L.C.R. Wijewardhana, Phys. Rev. D 35, 774 (1987)

    Article  ADS  Google Scholar 

  28. T.W. Appelquist, D. Karabali, L.C.R. Wijewardhana, Phys. Rev. Lett. 57, 957 (1986)

    Article  ADS  Google Scholar 

  29. R.S. Chivukula, H. Georgi, L. Randall, Nucl. Phys. B 292, 93 (1987)

    Article  ADS  Google Scholar 

  30. R.S. Chivukula, H. Georgi, Phys. Lett. B 188, 99 (1987)

    Article  ADS  Google Scholar 

  31. L. Randall, Nucl. Phys. B 403, 122 (1993)

    Article  ADS  Google Scholar 

  32. Y. Nambu, EFI-88-62-CHICAGO Proc. Int. Workshop New Trends in Strong Coupling Gauge Theories, Nagoya, Japan, August 24–27, 1988

  33. V.A. Miransky, M. Tanabashi, K. Yamawaki, Mod. Phys. Lett. A 4, 1043 (1989)

    Article  ADS  Google Scholar 

  34. Y. Nambu, Phys. Lett. B 221, 177 (1989)

    Article  Google Scholar 

  35. W.J. Marciano, Phys. Rev. Lett. 62, 2793 (1989)

    Article  ADS  Google Scholar 

  36. Y. Nambu, Phys. Rev. D 41, 219 (1990)

    Article  Google Scholar 

  37. W.A. Bardeen, C.T. Hill, M. Lindner, Phys. Rev. D 41, 1647 (1990).

    Article  ADS  Google Scholar 

  38. C.T. Hill, Phys. Lett. B 266, 419 (1991)

    Article  ADS  Google Scholar 

  39. C.T. Hill, Phys. Lett. B 345, 483 (1995)

    Article  ADS  Google Scholar 

  40. G.F. Giudice, S. Raby, Nucl. Phys. B 368, 221 (1992)

    Article  ADS  Google Scholar 

  41. M. Lindner, D. Ross, Nucl. Phys. B 370, 30 (1992)

    Article  ADS  Google Scholar 

  42. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, JHEP 0207, 034 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  43. I. Low, W. Skiba, D. Smith, Phys. Rev. D 66, 072001 (2002)

    Article  ADS  Google Scholar 

  44. M. Schmaltz, D. Tucker-Smith, arXiv:hep-ph/0502182

  45. M. Perelstein, arXiv:hep-ph/0512128, to appear in Prog. Part. Nucl. Phys.

  46. N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Lett. B 513, 232 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. N. Arkani-Hamed, A.G. Cohen, T. Gregoire, J.G. Wacker, JHEP 0208, 020 (2002)

    MathSciNet  ADS  Google Scholar 

  48. C. Csaki, C. Grojean, L. Pilo, J. Terning, Phys. Rev. Lett. 92, 101802 (2004) [arXiv:hep-ph/0308038]

    Article  ADS  Google Scholar 

  49. Y. Nomura, JHEP 0311, 050 (2003) [arXiv:hep-ph/0309189]

    Article  ADS  Google Scholar 

  50. R. Foadi, S. Gopalakrishna, C. Schmidt, JHEP 0403, 042 (2004) [arXiv:hep-ph/0312324]

    Article  ADS  Google Scholar 

  51. B.C. Allanach et al., “Les Houches ‘Physics at TeV colliders 2005’ Beyond the standard model working group: Summary report”, arXiv:hep-ph/0602198

  52. S. Dutta, K. Hagiwara, Q.S. Yan, arXiv:hep-ph/0603038

  53. W. Kilian, M. Mertens, J. Reuter, M. Schumacher, in preparation

  54. LHC/LC Study Group Collaboration, G. Weiglein et al., arXiv:hep-ph/0410364.

  55. P. Krstonošić, K. Mönig, M. Beyer, E. Schmidt, H. Schröder, hep-ph/0508179

  56. W. Kilian, J. Reuter, hep-ph/0507099

  57. V. Barger, T. Han, R.J.N. Phillips, Phys. Rev. D 39, 146 (1989)

    Article  ADS  Google Scholar 

  58. S. Dawson, A. Likhoded, G. Valencia, O. Yushchenko, in New directions for High-Energy Physics (Snowmass, 1996) [hep-ph/9610299]

  59. O. Eboli, M. Gonzalez-Garcia, J. Mizukoshi, Phys. Rev. D 58, 034008 (1998)

    Article  ADS  Google Scholar 

  60. M. Beyer, S. Christ, E. Schmidt, H. Schröder, arXiv:hep-ph/0409305

  61. LEP Collaborations, arXiv:hep-ex/0509008

  62. K.J.F. Gaemers, G.J. Gounaris, Z. Phys. C 1, 259 (1979)

    Article  Google Scholar 

  63. K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987)

    Article  ADS  Google Scholar 

  64. V.D. Barger, K.M. Cheung, T. Han, R.J.N. Phillips, Phys. Rev. D 52, 3815 (1995)

    Article  ADS  Google Scholar 

  65. B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. Lett. 38, 883 (1977)

    Article  ADS  Google Scholar 

  66. B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. D 16, 1519 (1977)

    Article  ADS  Google Scholar 

  67. D.A. Dicus, V.S. Mathur, Phys. Rev. D 7, 3111 (1973)

    Article  ADS  Google Scholar 

  68. J.J. van der Bij, Nucl. Phys. B 248, 141 (1984)

    Article  Google Scholar 

  69. J.J. van der Bij, Nucl. Phys. B 255, 648 (1985)

    Article  ADS  Google Scholar 

  70. J.J. van der Bij, Nucl. Phys. B 267, 557 (1986)

    Article  ADS  Google Scholar 

  71. V. Borodulin, G. Jikia, Nucl. Phys. B 520, 31 (1998)

    Article  ADS  Google Scholar 

  72. J. Bagger, V. Barger, K. Cheung, J. Gunion, T. Han, G.A. Ladinsky, R. Rosenfeld, C.-P. Yuan, Phys. Rev. D 49, 1246 (1994)

    Article  ADS  Google Scholar 

  73. J. Bagger, V. Barger, K. Cheung, J. Gunion, T. Han, G.A. Ladinsky, R. Rosenfeld, C.-P. Yuan, Phys. Rev. D 52, 3878 (1995)

    Article  ADS  Google Scholar 

  74. A.S. Belyaev, O.J.P. Eboli, M.C. Gonzalez-Garcia, J.K. Mizukoshi, S.F. Novaes, I. Zacharov, Phys. Rev. D 59, 015022 (1999)

    Article  ADS  Google Scholar 

  75. S. Haywood et al., arXiv:hep-ph/0003275

  76. T. Appelquist, C.W. Bernard, Phys. Rev. D 22, 200 (1980)

    Article  ADS  Google Scholar 

  77. A.C. Longhitano, Phys. Rev. D 22, 1166 (1980)

    Article  ADS  Google Scholar 

  78. T. Appelquist, Nucl. Phys. B 188, 118 (1981)

    Article  Google Scholar 

  79. T. Appelquist, G.H. Wu, Phys. Rev. D 48, 3235 (1993)

    Article  ADS  Google Scholar 

  80. S. Weinberg, Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  81. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  82. H. Georgi, L. Randall, Nucl. Phys. B 276, 241 (1986)

    Article  ADS  Google Scholar 

  83. S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

    Article  ADS  Google Scholar 

  84. M.S. Chanowitz, M. Golden, H. Georgi, Phys. Rev. D 36, 1490 (1987)

    Article  ADS  Google Scholar 

  85. A. Nyffeler, A. Schenk, Phys. Rev. D 62, 113006 (2000)

    Article  ADS  Google Scholar 

  86. For reviews, see [1, 2, 3] and A. Dobado, A. Gomez-Nicola, A. Maroto, J.R. Pelaez, Effective Lagrangians for the standard model (Springer, 1997)

  87. W. Kilian, “Electroweak symmetry breaking: The bottom-up approach”, Springer Tracts in Modern Physics 198 (Springer, 2003)

  88. C.E. Vayonakis, Lett. Nuovo Cim. 17, 383 (1976)

    Google Scholar 

  89. M.S. Chanowitz, M.K. Gaillard, Nucl. Phys. B 261, 379 (1985)

    Article  ADS  Google Scholar 

  90. G.J. Gounaris, R. Kögerler, H. Neufeld, Phys. Rev. D 34, 3257 (1986)

    Article  ADS  Google Scholar 

  91. Y.-P. Yao, C.-P. Yuan, Phys. Rev. D 38, 2237 (1988)

    Article  ADS  Google Scholar 

  92. J. Bagger, C. Schmidt, Phys. Rev. D 34, 264 (1990)

    Article  ADS  Google Scholar 

  93. M.C. Gonzalez-Garcia, A. Gusso, S.F. Novaes, J. Phys. G 24, 2213 (1998)

    Article  ADS  Google Scholar 

  94. R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Nucl. Phys. B 282, 235 (1987)

    Article  ADS  Google Scholar 

  95. R. Casalbuoni et al., Phys. Lett. B 349, 533 (1995)

    Article  ADS  Google Scholar 

  96. R. Casalbuoni et al., Phys. Rev. D 53, 5201 (1996)

    Article  ADS  Google Scholar 

  97. W. Kilian, J. Reuter, Phys. Rev. D 70, 015004 (2004)

    Article  ADS  Google Scholar 

  98. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    Article  ADS  Google Scholar 

  99. M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992)

    Article  ADS  Google Scholar 

  100. J. Erler, P. Langacker, in [101]

  101. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  102. The LEP collaborations, A Combination of Preliminary Electroweak Measurements and Constraints on the standard model, CERN-EP/2004-069, arXiv:hep-ex/0412015

  103. LEP Electroweak Working Group, A combination of preliminary electroweak measurements and constraints on the standard model, arXiv:hep-ex/0511027

  104. R. Hawkings, K. Mönig, Eur. Phys. J. 1, 8 (1999) [arXiv: hep-ex/9910022]

    Google Scholar 

  105. G. Wilson, Precision measurement of the W mass with a polarised threshold scan at a linear collider, LC-PHSM-2001-009

  106. W. Menges, A study of charged current triple gauge couplings at TESLA, LC-PHSM-2001-022

  107. W. Kilian, WHIZARD 1.0: A generic Monte Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039, http://www-ttp.physik.uni-karlsruhe.de/whizard

  108. W. Kilian, WHIZARD: Complete simulations for electroweak multi-particle processes, in Proc. ICHEP (Amsterdam, 2002), p. 831, http://www-ttp.physik.uni-karlsruhe.de/whizard

  109. T. Ohl, O’MEGA: An Optimizing Matrix Element Generator, in Proc. 7th Int. Workshop Adv. Comput. Analysis Techn. Phys. Res. (ACAT 2000) (Fermilab, Batavia, Il, 2000) [arXiv:hep-ph/0011243], http://theorie.physik.uni-wuerzburg.de/∼ohl/omega

  110. M. Moretti, T. Ohl, J. Reuter, LC-TOOL-2001-040 [arXiv: hep-ph/0102195], http://theorie.physik.uni-wuerzburg.de/∼ohl/omega

  111. T. Ohl, arXiv:hep-ph/0011287

  112. W. Kilian, T. Ohl, J. Reuter, O’Mega/WHIZARD: Multi-Purpose Multi-Particle Event Generator, in preparation

  113. T. Sjöstrand, L. Lönnblad, S. Mrenna, hep-ph/0108264

  114. T. Sjöstrand, P. Eden, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, E. Norrbin, PYTHIA V6.221, Comp. Phys. Commun. 135, 238 (2001)

    Article  MATH  ADS  Google Scholar 

  115. M. Beyer, E. Schmidt, H. Schröder, in preparation

  116. M. Pohl, H.J. Schreiber, hep-ex/0206009

  117. F. James, MINUIT Function Minimization and Error Analysis, Version 94.1, CERN Program Library Long Writeup D506

  118. R. Chierici, S. Rosati, M. Kobel, LC-PHSM-2001-038, in Batavia 2000, Physics and experiments with future linear e+e- colliders, 544–549

  119. T. Ohl, Comput. Phys. Commun. 120, 13 (1999) [arXiv: hep-ph/9806432]

    Article  MATH  ADS  Google Scholar 

  120. D.J. Jackson, A topological vertex reconstruction algorithm for hadronic jets, SLAC-PUB-7215, December 1996

  121. E. Boos, H.J. He, W. Kilian, A. Pukhov, C.P. Yuan, P.M. Zerwas, Phys. Rev. D 57, 1553 (1998)

    Article  ADS  Google Scholar 

  122. E. Boos, Phys. Rev. D 61, 077901 (2000)

    Article  ADS  Google Scholar 

  123. ECFA/DESY LC Physics Working Group, J.A. Aguilar-Saavedra et al., TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider, arXiv:hep-ph/0106315

  124. K. Mönig, J. Sekaric, LC-PHSM-2003-072

  125. T.L. Barklow, SLAC-PUB-10793 Proc. LCWS 2000, Fermilab, Batavia, Illinois, 24–28 October 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Reuter.

Additional information

PACS

11.30.Qc; 12.39.Fe; 12.60.Fr; 13.66.Jn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, M., Kilian, W., Krstonošić, P. et al. Determination of new electroweak parameters at the ILC – sensitivity to new physics. Eur. Phys. J. C 48, 353–388 (2006). https://doi.org/10.1140/epjc/s10052-006-0038-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0038-0

Keywords

Navigation