[go: up one dir, main page]

Skip to main content
Log in

Quantum Hertz entropy increase in a quenched spin chain

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The classical Hertz entropy is the logarithm of the volume of phase space bounded by the constant energy surface; its quantum counterpart, the quantum Hertz entropy, is \(\hat S = k_B \ln \hat N\), where the quantum operator \(\hat N\) specifies the number of states with energy below a given energy eigenstate. It has been recently proved that, when an isolated quantum mechanical system is driven out of equilibrium by an external driving, the change in the expectation of its quantum Hertz entropy cannot be negative, and is null for adiabatic driving. This is in full agreement with the Clausius principle. Here, we test the behavior of the expectation of the quantum Hertz entropy in the case when two identical XY spin chains initially at different temperatures are quenched into a single XY chain. We observed no quantum Hertz entropy decrease. This finding further supports the statement that the quantum Hertz entropy is a proper entropy for isolated quantum systems. We further quantify how far the quenched chain is from thermal equilibrium and the temperature of the closest equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011)

    Article  ADS  Google Scholar 

  2. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83 1653(E) (2011)

    ADS  Google Scholar 

  3. M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. E. Fermi, Thermodynamics (Dover Publ., New York, 1956)

  5. A.E. Allahverdyan, T.M. Nieuwenhuizen, Physica A 305, 542 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  7. H. Tasaki, arXiv:cond-mat/0009244 (2000)

  8. J. Kurchan, arXiv:cond-mat/0007360 (2000)

  9. P. Talkner, P. Hänggi, J. Phys. A 40, F569 (2007)

    Article  ADS  MATH  Google Scholar 

  10. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011)

    Article  ADS  Google Scholar 

  11. A. Polkovnikov, Ann. Phys. 326, 486 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. L.F. Santos, A. Polkovnikov, M. Rigol, Phys. Rev. Lett. 107, 040601 (2011)

    Article  ADS  Google Scholar 

  13. H. Tasaki, arXiv:cond-mat/0009206 (2000)

  14. M. Campisi, Stud. Hist. Phil. Mod. Phys. 39, 181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Campisi, Phys. Rev. E 78, 051123 (2008)

    Article  ADS  Google Scholar 

  16. P. Hertz, Ann. Phys. (Leipzig) 338, 225 (1910)

    Article  ADS  Google Scholar 

  17. M. Campisi, Stud. Hist. Philos. Mod. Phys. 36, 275 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Campisi, D.H. Kobe, Am. J. Phys. 78, 608 (2010)

    Article  ADS  Google Scholar 

  19. A.V. Ponomarev, S. Denisov, P. Hänggi, Phys. Rev. Lett. 106, 010405 (2011)

    Article  ADS  Google Scholar 

  20. A.V. Ponomarev, S. Denisov, P. Hänggi, J. Gemmer, Europhys. Lett. 98, 40011 (2012)

    Article  ADS  Google Scholar 

  21. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  22. M. Campisi, D. Zueco, P. Talkner, Chem. Phys. 375, 187 (2010)

    Article  ADS  Google Scholar 

  23. R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Phys. Rev. Lett. 109, 160601 (2012)

    Article  ADS  Google Scholar 

  24. S. Hilbert, J. Dunkel, Phys. Rev. E 74, 011120 (2006)

    Article  ADS  Google Scholar 

  25. J. Gibbs, Elementary Principles in Statistical Mechanics (Yale U.P., New Haven, 1902)

  26. L. Landau, E. Lifschitz, Statistical Physics, 2nd edn. (Pergamon Press, Oxford, 1969)

  27. K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)

  28. H.B. Callen, Thermodynamics: an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics (Wiley, New York, 1960)

  29. S. Braun, J.P. Ronzheimer, M. Schreiber, S.S. Hodgman, T. Rom, I. Bloch, U. Schneider, Science 339, 52 (2013)

    Article  ADS  Google Scholar 

  30. F. Schlögl, Z. Phys. 191, 81 (1966)

    Article  ADS  Google Scholar 

  31. G.N. Bochkov, Y.E. Kuzovlev, Physica A 106, 443 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Kawai, J.M.R. Parrondo, C.V. den Broeck, Phys. Rev. Lett. 98, 080602 (2007)

    Article  ADS  Google Scholar 

  33. S. Deffner, E. Lutz, Phys. Rev. Lett. 105, 170402 (2010)

    Article  ADS  Google Scholar 

  34. G.E. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  35. R. Kubo, H. Ichimura, T. Usui, N. Hashitsume, Statistical Mechanics, 6th edn. (North Holland Publishing, Amsterdam, 1965)

  36. N.F. Ramsey, Phys. Rev. 103, 20 (1956)

    Article  ADS  MATH  Google Scholar 

  37. E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. H.J. Mikeska, W. Pesch, Z. Phys. B 26, 351 (1977)

    Article  ADS  Google Scholar 

  39. J. Dajka, J. Łuczka, P. Hänggi, Quantum Inf. Process. 10, 85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Campisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, D.G., Campisi, M. Quantum Hertz entropy increase in a quenched spin chain. Eur. Phys. J. B 86, 157 (2013). https://doi.org/10.1140/epjb/e2013-40003-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40003-x

Keywords

Navigation