[go: up one dir, main page]

Skip to main content
Log in

Generating functions and stability study of multivariate self-excited epidemic processes

  • Regular Article
  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a stability study of the class of multivariate self-excited Hawkes point processes, that can model natural and social systems, including earthquakes, epileptic seizures and the dynamics of neuron assemblies, bursts of exchanges in social communities, interactions between Internet bloggers, bank network fragility and cascading of failures, national sovereign default contagion, and so on. We present the general theory of multivariate generating functions to derive the number of events over all generations of various types that are triggered by a mother event of a given type. We obtain the stability domains of various systems, as a function of the topological structure of the mutual excitations across different event types. We find that mutual triggering tends to provide a significant extension of the stability (or subcritical) domain compared with the case where event types are decoupled, that is, when an event of a given type can only trigger events of the same type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Brémaud, Point Processes and Queues (Springer, New York, 1981)

  2. D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes (Springer Series in Statistics, 2007)

  3. P. Horowitz, H. Winfield, The Art of Electronics, 2nd edn. (Cambridge University Press, Cambridge (UK), 1989), pp. 431–2

  4. E.W. Montroll, H. Scher, J. Stat. Phys. 9, 101 (1973)

    Article  ADS  Google Scholar 

  5. H. Scher, E.W. Montroll, Phys. Rev. B 12, 2455 (1975)

    Article  ADS  Google Scholar 

  6. R. Cont, P. Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC Financial Mathematical Series, 2004)

  7. A.G. Hawkes, J. R. Stat. Soc. Ser. B 33, 438 (1971)

    MathSciNet  ADS  MATH  Google Scholar 

  8. A.G. Hawkes, Spectra of some mutually exciting point processes with associated variables, in Stochastic Point Processes, edited by P.A.W. Lewis (Wiley, 1972), pp. 261–271

  9. A.G. Hawkes, L. Adamopoulos, Bull. Int. Stat. Inst. 45, 454 (1973)

    Google Scholar 

  10. A.G. Hawkes, D. Oakes, J. Apl. Probab. 11, 493 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Ogata, J. Am. Stat. Assoc. 83, 9 (1988)

    Article  Google Scholar 

  12. Y. Ogata, Tectonophysics 169, 159 (1989)

    Article  ADS  Google Scholar 

  13. Y. Ogata, Ann. Inst. Statist. Mech. 50, 379 (1998)

    Article  MATH  Google Scholar 

  14. Y. Ogata, Pure Appl. Geophys. 155, 471 (1999)

    Article  ADS  Google Scholar 

  15. A. Helmstetter, D. Sornette, J. Geophys. Res. 107, 2237 (2002)

    Article  ADS  Google Scholar 

  16. A. Saichev, D. Sornette, J. Geophys. Res. 112, B04313 (2007)

    Article  Google Scholar 

  17. D. Sornette, I. Osorio, Prediction, in Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Physics and Engineering, edited by I. Osorio, H.P. Zaveri, M.G. Frei, S. Arthurs (CRC Press, Taylor & Francis Group, 2010), http://arxiv.org/abs/1007.2420

  18. V. Chavez-Demoulin, A.C. Davison, A.J. McNeil, Quant. Financ. 5, 227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Bauwens, N. Hautsch, Modelling Financial High Frequency Data Using Point Processes, Handbook of Financial Time Series (2009), Part 6, pp. 953–979, DOI: 10.1007/978-3-540-71297-8_41

  20. E. Errais, K. Giesecke, L.R. Goldberg, Affine Point Processes and Portfolio Credit Risk (2010), available at SSRN: http://ssrn.com/abstract=908045

  21. S. Azizpour, K. Giesecke, G. Schwenkler, Exploring the Sources of Default Clustering, working paper, Stanford University, 2010

  22. Y. Aït-Sahalia, J. Cacho-Diaz, R.J.A. Laeven, Modeling financial contagion using mutually exciting jump processes, working Paper 15850, 2010, http://www.nber.org/papers/w15850

  23. M. Salmon, W.W. Tham, Preferred Habitat, Journal of Financial Markets (2008), Revised and resubmit

  24. A. Saichev, T. Maillart and D. Sornette, Hierarchy of Temporal Responses of Multivariate Self-Excited Epidemic Processes, under revision at Phys. Rev. E (http://arxiv.org/abs/1101.1611)

  25. J. Zhuang, D. Vere-Jones, H. Guan, Y. Ogata, L. Ma, Pure Appl. Geophys. 162, 1367 (2005)

    Article  ADS  Google Scholar 

  26. A. Helmstetter, Phys. Res. Lett. 91, 058501 (2003)

    Article  ADS  Google Scholar 

  27. T. Ozaki, Ann. Inst. Statist. Math. 31, Part B, 145 (1979)

  28. Y. Ogata, IEEE Trans. Inf. Theory IT-27, 23 (1981)

    Google Scholar 

  29. Y. Ogata, H. Akaike, J. R. Stat. Soc. Ser. B 44, 102 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Y. Ogata, J. Phys. Earth 31, 115 (1983)

    Article  Google Scholar 

  31. J. Zhuang, Y. Ogata, D. Vere-Jones, J. Am. Stat. Assoc. 97, 369 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Zhuang, Y. Ogata, D. Vere-Jones, J. Geophys. Res. 109, B05301 (2004)

    Article  Google Scholar 

  33. Y. Ogata, J. Zhuang, Tectonophysics 413, 13 (2006)

    Article  ADS  Google Scholar 

  34. J. Zhuang, Ph.D. thesis, Department of Statistical Science, The Graduate University for Advanced Studies, 2002

  35. D. Marsan, O. Lengliné, Science 319, 1076 (2008)

    Article  ADS  Google Scholar 

  36. D. Sornette, S. Utkin, Phys. Rev. E 79, 061110 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  37. D. Sornette, A. Helmstetter, Phys. Rev. Lett. 89, 158501 (2002)

    Article  ADS  Google Scholar 

  38. A. Helmstetter, D. Sornette, Phys. Rev. E 66, 061104 (2002)

    Article  ADS  Google Scholar 

  39. A. Helmstetter, D. Sornette, J.-R. Grasso, J. Geophys. Res. 108, 2046 (2003)

    Article  ADS  Google Scholar 

  40. A. Helmstetter, D. Sornette, Geophys. Res. Lett. 30 (11) doi:10.1029/2003GL017670 June (2003)

  41. A. Helmstetter, D. Sornette, J. Geophys. Res. 108, 2482 (2003)

    Article  ADS  Google Scholar 

  42. A. Saichev, D. Sornette, Phys. Rev. E 71, 056127 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  43. A. Saichev, A. Helmstetter, D. Sornette, Pure Appl. Geophys. 162, 1113 (2005)

    Article  ADS  Google Scholar 

  44. A. Saichev, D. Sornette, Phys. Rev. E 70, 046123 (2004)

    Article  ADS  Google Scholar 

  45. A. Saichev, D. Sornette, Eur. Phys. J. B 51, 443 (2006)

    Article  ADS  Google Scholar 

  46. D. Sornette, S. Utkin, A. Saichev, Phys. Rev. E 77, 066109 (2008)

    Article  ADS  Google Scholar 

  47. T.E. Harris, The theory of branching processes (Springer, Berlin, 1963)

  48. T.J. Liniger, Multivariate Hawkes Processes, Ph.D. Diss. ETH No. 18403, ETH Zurich, 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sornette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saichev, A.I., Sornette, D. Generating functions and stability study of multivariate self-excited epidemic processes. Eur. Phys. J. B 83, 271 (2011). https://doi.org/10.1140/epjb/e2011-20298-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-20298-3

Keywords