Abstract
We present a stability study of the class of multivariate self-excited Hawkes point processes, that can model natural and social systems, including earthquakes, epileptic seizures and the dynamics of neuron assemblies, bursts of exchanges in social communities, interactions between Internet bloggers, bank network fragility and cascading of failures, national sovereign default contagion, and so on. We present the general theory of multivariate generating functions to derive the number of events over all generations of various types that are triggered by a mother event of a given type. We obtain the stability domains of various systems, as a function of the topological structure of the mutual excitations across different event types. We find that mutual triggering tends to provide a significant extension of the stability (or subcritical) domain compared with the case where event types are decoupled, that is, when an event of a given type can only trigger events of the same type.
Similar content being viewed by others
References
P. Brémaud, Point Processes and Queues (Springer, New York, 1981)
D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes (Springer Series in Statistics, 2007)
P. Horowitz, H. Winfield, The Art of Electronics, 2nd edn. (Cambridge University Press, Cambridge (UK), 1989), pp. 431–2
E.W. Montroll, H. Scher, J. Stat. Phys. 9, 101 (1973)
H. Scher, E.W. Montroll, Phys. Rev. B 12, 2455 (1975)
R. Cont, P. Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC Financial Mathematical Series, 2004)
A.G. Hawkes, J. R. Stat. Soc. Ser. B 33, 438 (1971)
A.G. Hawkes, Spectra of some mutually exciting point processes with associated variables, in Stochastic Point Processes, edited by P.A.W. Lewis (Wiley, 1972), pp. 261–271
A.G. Hawkes, L. Adamopoulos, Bull. Int. Stat. Inst. 45, 454 (1973)
A.G. Hawkes, D. Oakes, J. Apl. Probab. 11, 493 (1974)
Y. Ogata, J. Am. Stat. Assoc. 83, 9 (1988)
Y. Ogata, Tectonophysics 169, 159 (1989)
Y. Ogata, Ann. Inst. Statist. Mech. 50, 379 (1998)
Y. Ogata, Pure Appl. Geophys. 155, 471 (1999)
A. Helmstetter, D. Sornette, J. Geophys. Res. 107, 2237 (2002)
A. Saichev, D. Sornette, J. Geophys. Res. 112, B04313 (2007)
D. Sornette, I. Osorio, Prediction, in Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Physics and Engineering, edited by I. Osorio, H.P. Zaveri, M.G. Frei, S. Arthurs (CRC Press, Taylor & Francis Group, 2010), http://arxiv.org/abs/1007.2420
V. Chavez-Demoulin, A.C. Davison, A.J. McNeil, Quant. Financ. 5, 227 (2005)
L. Bauwens, N. Hautsch, Modelling Financial High Frequency Data Using Point Processes, Handbook of Financial Time Series (2009), Part 6, pp. 953–979, DOI: 10.1007/978-3-540-71297-8_41
E. Errais, K. Giesecke, L.R. Goldberg, Affine Point Processes and Portfolio Credit Risk (2010), available at SSRN: http://ssrn.com/abstract=908045
S. Azizpour, K. Giesecke, G. Schwenkler, Exploring the Sources of Default Clustering, working paper, Stanford University, 2010
Y. Aït-Sahalia, J. Cacho-Diaz, R.J.A. Laeven, Modeling financial contagion using mutually exciting jump processes, working Paper 15850, 2010, http://www.nber.org/papers/w15850
M. Salmon, W.W. Tham, Preferred Habitat, Journal of Financial Markets (2008), Revised and resubmit
A. Saichev, T. Maillart and D. Sornette, Hierarchy of Temporal Responses of Multivariate Self-Excited Epidemic Processes, under revision at Phys. Rev. E (http://arxiv.org/abs/1101.1611)
J. Zhuang, D. Vere-Jones, H. Guan, Y. Ogata, L. Ma, Pure Appl. Geophys. 162, 1367 (2005)
A. Helmstetter, Phys. Res. Lett. 91, 058501 (2003)
T. Ozaki, Ann. Inst. Statist. Math. 31, Part B, 145 (1979)
Y. Ogata, IEEE Trans. Inf. Theory IT-27, 23 (1981)
Y. Ogata, H. Akaike, J. R. Stat. Soc. Ser. B 44, 102 (1982)
Y. Ogata, J. Phys. Earth 31, 115 (1983)
J. Zhuang, Y. Ogata, D. Vere-Jones, J. Am. Stat. Assoc. 97, 369 (2002)
J. Zhuang, Y. Ogata, D. Vere-Jones, J. Geophys. Res. 109, B05301 (2004)
Y. Ogata, J. Zhuang, Tectonophysics 413, 13 (2006)
J. Zhuang, Ph.D. thesis, Department of Statistical Science, The Graduate University for Advanced Studies, 2002
D. Marsan, O. Lengliné, Science 319, 1076 (2008)
D. Sornette, S. Utkin, Phys. Rev. E 79, 061110 (2009)
D. Sornette, A. Helmstetter, Phys. Rev. Lett. 89, 158501 (2002)
A. Helmstetter, D. Sornette, Phys. Rev. E 66, 061104 (2002)
A. Helmstetter, D. Sornette, J.-R. Grasso, J. Geophys. Res. 108, 2046 (2003)
A. Helmstetter, D. Sornette, Geophys. Res. Lett. 30 (11) doi:10.1029/2003GL017670 June (2003)
A. Helmstetter, D. Sornette, J. Geophys. Res. 108, 2482 (2003)
A. Saichev, D. Sornette, Phys. Rev. E 71, 056127 (2005)
A. Saichev, A. Helmstetter, D. Sornette, Pure Appl. Geophys. 162, 1113 (2005)
A. Saichev, D. Sornette, Phys. Rev. E 70, 046123 (2004)
A. Saichev, D. Sornette, Eur. Phys. J. B 51, 443 (2006)
D. Sornette, S. Utkin, A. Saichev, Phys. Rev. E 77, 066109 (2008)
T.E. Harris, The theory of branching processes (Springer, Berlin, 1963)
T.J. Liniger, Multivariate Hawkes Processes, Ph.D. Diss. ETH No. 18403, ETH Zurich, 2009
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saichev, A.I., Sornette, D. Generating functions and stability study of multivariate self-excited epidemic processes. Eur. Phys. J. B 83, 271 (2011). https://doi.org/10.1140/epjb/e2011-20298-3
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2011-20298-3