[go: up one dir, main page]

Skip to main content
Log in

Dynamics of charged viscous dissipative cylindrical collapse with full causal approach

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939)

    Article  ADS  Google Scholar 

  2. C.W. Misner, D. Sharp, Phys. Rev. B 136, 571 (1964)

    Article  ADS  Google Scholar 

  3. P.C. Vaidya, Proc. Indian Acad. Sci. A 33, 264 (1951)

    ADS  Google Scholar 

  4. K. Lake, C. Hellaby, Phys. Rev. D 24, 3019 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  5. N.O. Santos, Mon. Not. R. Astron. Soc. 216, 403 (1985)

    Article  ADS  Google Scholar 

  6. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Herrera, A. Di Prisco, J.L. Hernández-Pastora, N.O. Santos, Phys. Lett. A 237, 113 (1998)

    Article  ADS  Google Scholar 

  8. L. Herrera, N.O. Santos, Phys. Rev. D 70, 084004 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Herrera, A. Di Prisco, J. Ospino, Gen. Relativ. Gravit. 44, 2645 (2012)

    Article  ADS  Google Scholar 

  10. L. Herrera, Int. J. Mod. Phys. D 15, 2197 (2006)

    Article  ADS  Google Scholar 

  11. L. Herrera, A. Di Prisco, W. Barreto, Phys. Rev. D 73, 024008 (2006)

    Article  ADS  Google Scholar 

  12. L. Herrera, N.O. Santos, A. Wang, Phys. Rev. D 78, 084026 (2008)

    Article  ADS  Google Scholar 

  13. L. Herrera, A. Di Prisco, J. Martin, J. Ospino, N.O. Santos, O. Troconis, Phys. Rev. D 69, 084026 (2004)

    Article  ADS  Google Scholar 

  14. R. Chan, Mon. Not. R. Astron. Soc. 316, 588 (2000)

    Article  ADS  Google Scholar 

  15. W.B. Bonor, A.R.G. de Oliveira, N.O. Santos, Phys. Rep. 181, 269 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Di Prisco, L. Herrera, G. Le Denmat, A.H. Maccullum, N.O. Santos, Phys. Rev. D 76, 064017 (2007)

    Article  ADS  Google Scholar 

  17. S. Rosseland, Mon. Not. R. Astron. Soc. 84, 720 (1924)

    Article  ADS  Google Scholar 

  18. A. Mitra, Phys. Rev. D 74, 024010 (2006)

    Article  ADS  Google Scholar 

  19. B.C. Tewari, Astrophys. Space Sci. 149, 233 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  20. B.C. Tewari, Indian J. Pure Appl. Math. 32, 504 (1994)

    Google Scholar 

  21. B.C. Tewari, Astrophys. Space Sci. 306, 273 (2006)

    Article  ADS  Google Scholar 

  22. W.B. Bonnor, A.R.G. de Oliveira, N.O. Santos, Phys. Rev. Lett. 181, 269 (1989)

    Google Scholar 

  23. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  24. A.K.G. de Oleveiria, N.O. Santos, C.A. Kolassis, Mon. Not. R. Astron. Soc. 216, 1001 (1985)

    Article  ADS  Google Scholar 

  25. S.D. Maharaj, M. Govender, Int. J. Mod. Phys. D 14, 667 (2005)

    Article  ADS  Google Scholar 

  26. J. Lattimer, Nucl. Phys. A 478, 199 (1988)

    Article  ADS  Google Scholar 

  27. W.D. Arnett, Astrophys. J. 218, 815 (1977)

    Article  ADS  Google Scholar 

  28. D. Kazanas, Atrosphys. J. 222, 109 (1978)

    Article  ADS  Google Scholar 

  29. C. Eckart, Phys. Rev. 58, 919 (1940)

    Article  ADS  Google Scholar 

  30. L. Landau, E. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959)

  31. N. Andersson, G.L. Comer, K. Glampedakis, Nucl. Phys. A 763, 212 (2005)

    Article  ADS  Google Scholar 

  32. B. Sa’d, I. Shovkovy, D. Rischke, arXiv:astro-ph/0703016

  33. M. Alford, A. Schmit, arXiv:0709.4251

  34. D. Blaschke, J. Berdermann, arXiv:0710.5293

  35. A. Drago, A. Lavagno, G. Pagliara, arXiv:astro-ph/0312009

  36. M. Sharif, S. Fatima, Gen. Relativ. Gravit. 43, 127 (2011)

    Article  ADS  Google Scholar 

  37. M. Sharif, G. Abbas, Astrophys. Space Sci. 335, 515 (2011)

    Article  ADS  Google Scholar 

  38. M. Sharif, M.Z. Bhatti, J. Cosmol. Astropart. Phys. 10, 056 (2013)

    Article  ADS  Google Scholar 

  39. L. Herrera, A. Di Prisco, E. Fuenmayor, O. Troconis, Int. J. Mod. Phys. D 18, 129 (2009)

    Article  ADS  Google Scholar 

  40. R. Maartens, arXiv:astro-ph/9609119

  41. K.S. Thorne, Phys. Rev. B 251, 138 (1965)

    Google Scholar 

  42. S. Chakraborty, S. Chakraborty, Adv. High Energy Phys. 2017, 8786791 (2017)

    Article  Google Scholar 

  43. M. Sharif, M. Azam, J. Cosmol. Astropart. Phys. 02, 043 (2012)

    Article  ADS  Google Scholar 

  44. H. Chao-Guang, Acta Phys. Sin. 4, 617 (1995)

    ADS  Google Scholar 

  45. C.W. Misner, D. Sharp, Phys. Rev. B 137, 1360 (1965)

    Article  Google Scholar 

  46. W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976)

    Article  ADS  Google Scholar 

  47. W. Israel, J. Stewart, Phys. Lett. A 58, 213 (1976)

    Article  ADS  Google Scholar 

  48. C. Cattaneo, Atti. Semin. Mat. Fis. Univ. Modena 3, 3 (1948)

    Google Scholar 

  49. S.M. Shah, G. Abbas, Eur. Phys. J. C 77, 251 (2017)

    Article  ADS  Google Scholar 

  50. H. Weyl, Ann. Phys. (Leipzig) 54, 117 (1917)

    Article  ADS  Google Scholar 

  51. T. Levi-Civita, Rend. Mat. Acc. Lincei 28, 101 (1919)

    Google Scholar 

  52. A. Anile, D. Pavon, V. Romano, arXiv:gr-qc/9810014

  53. L. Herrera, D. Pavon, Physica A 307, 121 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Abbas.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.M., Abbas, G. Dynamics of charged viscous dissipative cylindrical collapse with full causal approach. Eur. Phys. J. A 53, 228 (2017). https://doi.org/10.1140/epja/i2017-12423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12423-2

Navigation