[go: up one dir, main page]

Skip to main content
Log in

Underground nuclear astrophysics: Why and how

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The goal of nuclear astrophysics is to measure cross-sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross-sections are very low due to the suppression of the Coulomb barrier. Cosmic-ray-induced background can seriously limit the determination of reaction cross-sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross-section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, 1988)

  2. C. Iliadis, Nuclear Physics of Stars (Wiley-VCH, New York, 2007)

  3. D. Bemmerer et al., Eur. Phys. J. A 24, 313 (2005)

    Article  ADS  Google Scholar 

  4. R. Bonetti et al., Phys. Rev. Lett. 82, 5205 (1999)

    Article  ADS  Google Scholar 

  5. C. Casella et al., Nucl. Phys. A 706, 203 (2002)

    Article  ADS  Google Scholar 

  6. L. Gialanella et al., Rev. Mex. Fis. 43, 169 (1997)

    Google Scholar 

  7. D.A. Scott et al., Phys. Rev. Lett. 109, 208001 (2012)

    Article  Google Scholar 

  8. B. Limata et al., Phys. Rev. C 82, 015801 (2010)

    Article  ADS  Google Scholar 

  9. M. Marta et al., Phys. Rev. C 78, 022802 (2008)

    Article  ADS  Google Scholar 

  10. M. Marta et al., Phys. Rev. C 83, 045804 (2011)

    Article  ADS  Google Scholar 

  11. E.G. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998)

    Article  ADS  Google Scholar 

  12. E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  13. U. Greife et al., Nucl. Instrum. Methods A 350, 327 (1994)

    Article  ADS  Google Scholar 

  14. A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003)

    Article  ADS  Google Scholar 

  15. C. Broggini et al., Annu. Rev. Nucl. Part. Sci. 60, 53 (2010)

    Article  ADS  Google Scholar 

  16. H. Costantini et al., Rep. Prog. Phys. 72, 086301 (2009)

    Article  ADS  Google Scholar 

  17. T. Szücs et al., Eur. Phys. J. A 44, 513 (2010)

    Article  ADS  Google Scholar 

  18. F. Cavanna et al., Eur. Phys. J. A 50, 179 (2014)

    Article  ADS  Google Scholar 

  19. A. Caciolli et al., Eur. Phys. J. A 39, 179 (2009)

    Article  ADS  Google Scholar 

  20. C. Bruno et al., Eur. Phys. J. A 51, 94 (2015)

    Article  ADS  Google Scholar 

  21. F. Käppeler et al., Rep. Prog. Part. Phys. 43, 419 (1999)

    Article  ADS  Google Scholar 

  22. M. Aliotta, Helium burning and neutron sources in the stars, contribution to this Topical Issue

  23. S. Falahat et al., Nucl. Instrum. Methods A 700, 53 (2013)

    Article  ADS  Google Scholar 

  24. Jaeger et al., Phys. Rev. Lett. 87, 202501 (2011)

    Article  ADS  Google Scholar 

  25. A. Rindi et al., Nucl. Instrum. Methods A 272, 871 (1988)

    Article  ADS  Google Scholar 

  26. P. Belli et al., Nuovo Cimento A 101, 959 (1989)

    Article  ADS  Google Scholar 

  27. Z. Debicki et al., Nucl. Phys. B - Proc. Suppl. 196, 429 (2009)

    Article  ADS  Google Scholar 

  28. A. Best et al., Nucl. Instrum. Methods A 812, 1 (2016) DOI:10.1016/j.nima.2015.12.034

    Article  ADS  Google Scholar 

  29. M. Anders et al., Eur. Phys. J. A 49, 28 (2013)

    Article  ADS  Google Scholar 

  30. D. Bemmerer et al., J. Phys. G: Nucl. Part. Phys. 36, 045202 (2009)

    Article  ADS  Google Scholar 

  31. F. Strieder et al., Phys. Lett. B 707, 60 (2012)

    Article  ADS  Google Scholar 

  32. A. Formicola et al., Phys. Lett. B 591, 61 (2004)

    Article  ADS  Google Scholar 

  33. D. Scott et al., Phys. Rev. Lett. 109, 202501 (2012)

    Article  ADS  Google Scholar 

  34. C. Bordeaunu et al., Nucl. Instrum. Methods A 693, 220 (2012)

    Article  ADS  Google Scholar 

  35. A. Kontos et al., Nucl. Instrum. Methods A 664, 272 (2012)

    Article  ADS  Google Scholar 

  36. H. Costantini et al., Eur. Phys. J. A 27, s01, 177 (2006)

    Article  ADS  Google Scholar 

  37. D. Bemmerer et al., Phys. Rev. Lett. 97, 122502 (2006)

    Article  ADS  Google Scholar 

  38. M. Anders et al., Phys. Rev. Lett. 113, 042501 (2014)

    Article  ADS  Google Scholar 

  39. F. Cavanna et al., Phys. Rev. Lett. 115, 252501 (2015)

    Article  ADS  Google Scholar 

  40. M. Marta et al., Nucl. Instrum. Methods A 569, 727 (2006)

    Article  ADS  Google Scholar 

  41. C. Casella et al., Nucl. Instrum. Methods 489, 160 (2002)

    Article  ADS  Google Scholar 

  42. J. Görres, K.U. Kettner, H. Krawinkel, C. Rolfs, Nucl. Instrum. Methods 177, 295 (1980)

    Article  ADS  Google Scholar 

  43. A. Di Leva et al., Phys. Rev. C 89, 015803 (2014)

    Article  ADS  Google Scholar 

  44. A. Caciolli et al., Astron. Astrophys. 533, A66 (2011)

    Article  ADS  Google Scholar 

  45. A. Caciolli et al., Eur. Phys. J. A 48, 1 (2012)

    Article  Google Scholar 

  46. M. Marta et al., Phys. Rev. 81, 055807 (2010)

    ADS  Google Scholar 

  47. A. Bergmaier, G. Dollinger, C.M. Frey, Nucl. Instrum. Methods B 638, 136 (1998)

    Google Scholar 

  48. F.G.R.A. Benninghoven, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends (Wiley, New York, 1987)

  49. F. Strieder, Bulletin of the American Physical Society - 2015 Fall Meeting of the APS Division of Nuclear Physics, Vol. 60 (2015)

  50. Wu Yu-Cheng et al., Chin. Phys. C 37, 086001 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Caciolli.

Additional information

Communicated by C. Broggini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Best, A., Caciolli, A., Fülöp, Z. et al. Underground nuclear astrophysics: Why and how. Eur. Phys. J. A 52, 72 (2016). https://doi.org/10.1140/epja/i2016-16072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16072-7

Keywords

Navigation