[go: up one dir, main page]

Skip to main content
Log in

Cosmic-ray-induced background intercomparison with actively shielded HPGe detectors at underground locations

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The main background above 3MeV for in-beam nuclear astrophysics studies with \( \gamma\)-ray detectors is caused by cosmic-ray-induced secondaries. The two commonly used suppression methods, active and passive shielding, against this kind of background were formerly considered only as alternatives in nuclear astrophysics experiments. In this work the study of the effects of active shielding against cosmic-ray-induced events at a medium deep location is performed. Background spectra were recorded with two actively shielded HPGe detectors. The experiment was located at 148m below the surface of the Earth in the Reiche Zeche mine in Freiberg, Germany. The results are compared to data with the same detectors at the Earth’s surface, and at depths of 45m and 1400m, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Heusser, Annu. Rev. Nucl. Part. Sci. 45, 543 (1995)

    Article  ADS  Google Scholar 

  2. P.P. Povinec, M. Betti, A.J.T. Jull, P. Vojtyla, Acta Phys. Slovaca 58, 1 (2008)

    Article  ADS  Google Scholar 

  3. L.R. Buchmann, C.A. Barnes, Nucl. Phys. A 777, 254 (2006)

    Article  ADS  Google Scholar 

  4. H. Costantini et al., Phys. Rev. C 82, 035802 (2010)

    Article  ADS  Google Scholar 

  5. LUNA Collaboration (M. Marta et al.), Phys. Rev. C 83, 045804 (2011)

    Google Scholar 

  6. LUNA Collaboration (D. Bemmerer et al.), J. Phys. G Nucl. Part. 36, 045202 (2009)

    Article  ADS  Google Scholar 

  7. S. Dababneh et al., Phys. Rev. C 68, 025801 (2003)

    Article  ADS  Google Scholar 

  8. E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  9. C. Broggini, D. Bemmerer, A. Guglielmetti, R. Menegazzo, Annu. Rev. Nucl. Part. Sci. 60, 53 (2010)

    Article  ADS  Google Scholar 

  10. M. Agostini et al., Eur. Phys. J. C 74, 2764 (2014)

    Article  ADS  Google Scholar 

  11. F. Arneodo et al., Nuovo Cimento A 112, 819 (1999)

    ADS  Google Scholar 

  12. LUNA Collaboration (A. Lemut et al.), Phys. Lett. B 634, 483 (2006)

    Article  ADS  Google Scholar 

  13. LUNA Collaboration (M. Anders et al.), Phys. Rev. Lett. 113, 042501 (2014)

    Article  ADS  Google Scholar 

  14. H. Klapdor-Kleingrothaus et al., Astropart. Phys. 18, 525 (2003)

    Article  ADS  Google Scholar 

  15. LUNA Collaboration (T. Szücs et al.), Eur. Phys. J. A 44, 513 (2010)

    Article  Google Scholar 

  16. T. Szücs et al., Eur. Phys. J. A 48, 8 (2012)

    Article  ADS  Google Scholar 

  17. M. Köhler et al., Appl. Radiat. Isot. 67, 736 (2009)

    Article  Google Scholar 

  18. Z. Elekes et al., Nucl. Instrum. Methods A 503, 580 (2003)

    Article  ADS  Google Scholar 

  19. O. Wagenbreth, A. Becke, G. Gunther, Der Freiberger Bergbau. Technische Denkmale und Geschichte (Deutscher Verlag für Grundstoffindustrie, Leipzig, 1986)

  20. H. Mischo, in 15. Geokinematischer Tag, 15. und 16. Mai 2014, Tagungsband, 326 Seiten, (Wagner Digitaldruck und Medien GmbH, 2014), Vol. 2014 pp. 1--17

  21. D. Hebert et al., Nucl. Instrum. Methods B 17, 427 (1986)

    Article  ADS  Google Scholar 

  22. P.K.F. Grieder, Cosmic rays at Earth (Elsevier Science B. V., Amsterdam, 2001)

  23. D.M. Mei, A. Hime, Phys. Rev. D 73, 053004 (2006)

    Article  ADS  Google Scholar 

  24. J.A. Formaggio, C.J. Martoff, Annu. Rev. Nucl. Part. Sci. 54, 361 (2004)

    Article  ADS  Google Scholar 

  25. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  26. http://nuclear.llnl.gov/simulations

  27. V.A. Kudryavtsev, N.J.C. Spooner, J.E. McMillan, Nucl. Instrum. Methods A 505, 688 (2003)

    Article  ADS  Google Scholar 

  28. H. Ohsumi et al., Nucl. Instrum. Methods A 482, 832 (2002)

    Article  ADS  Google Scholar 

  29. LUNA Collaboration (D. Bemmerer et al.), Eur. Phys. J. A 24, 313 (2005)

    Article  Google Scholar 

  30. R.L. Brodzinski, J.H. Reeves, F.T. Avignone, H.S. Miley, Nucl. Instrum. Methods A 254, 472 (1987)

    Article  ADS  Google Scholar 

  31. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011) special Issue on ENDF/B-VII.1 Library

    Article  ADS  Google Scholar 

  32. M. Laubenstein et al., Appl. Radiat. Isot. 61, 167 (2004)

    Article  Google Scholar 

  33. Nupecc long range plan 2010: Perspectives of nuclear physics in europe, www.nupecc.org/index.php?display=lrp2010/main

  34. T. Szücs, D. Bemmerer, T. Cowan, K. Zuber, J. Phys. Conf. Ser. 337, 012032 (2012)

    Article  ADS  Google Scholar 

  35. D. Bemmerer et al., Proc. Sci. PoS(NIC XIII), 044 (2015)

    Google Scholar 

  36. R. Hertenberger, M. Chen, B.L. Dougherty, Phys. Rev. C 52, 3449 (1995)

    Article  ADS  Google Scholar 

  37. L.B. Bezrukov et al., Sov. J. Nucl. Phys. 17, 51 (1973)

    Google Scholar 

  38. Palo Verde Collaboration (F. Boehm et al.), Phys. Rev. D 62, 092005 (2000)

    Article  Google Scholar 

  39. R.I. Enikeev et al., Sov. J. Nucl. Phys. 46, 1492 (1987)

    Google Scholar 

  40. LVD Collaboration (M. Aglietta) (1999) hep-ex/9905047

  41. M. Aglietta et al., Nuovo Cimento C 12, 467 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Szücs.

Additional information

Communicated by Tohru Motobayashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szücs, T., Bemmerer, D., Reinhardt, T.P. et al. Cosmic-ray-induced background intercomparison with actively shielded HPGe detectors at underground locations. Eur. Phys. J. A 51, 33 (2015). https://doi.org/10.1140/epja/i2015-15033-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15033-0

Keywords

Navigation