[go: up one dir, main page]

Skip to main content
Log in

Feasibility of low-energy radiative-capture experiments at the LUNA underground accelerator facility

  • Original Article
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been designed to study nuclear reactions of astrophysical interest. It is located deep underground in the Gran Sasso National Laboratory, Italy. Two electrostatic accelerators, with 50 and 400 kV maximum voltage, in combination with solid and gas target setups allowed to measure the total cross-sections of the radiative-capture reactions ^2H2H(p, γ)^3He3Heand ^14N14N(p, γ)^15O15Owithin their relevant Gamow peaks. We report on the gamma background in the Gran Sasso laboratory measured by germanium and bismuth germanate detectors, with and without an incident proton beam. A method to localize the sources of beam-induced background using the Doppler shift of emitted gamma rays is presented. The feasibility of radiative-capture studies at energies of astrophysical interest is discussed for several experimental scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Eddington, Nature 16, 14 (1920).

    Google Scholar 

  2. H. Bethe, Phys. Rev. 55, 434 (1938).

    Google Scholar 

  3. C. Rolfs, W. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988).

  4. U. Greife , Nucl. Instrum. Methods A 350, 327 (1994).

    Google Scholar 

  5. M. Junker , Phys. Rev. C 57, 2700 (1998).

    Google Scholar 

  6. R. Bonetti , Phys. Rev. Lett. 82, 5205 (1999).

    Google Scholar 

  7. C. Casella , Nucl. Instrum. Methods A 489, 160 (2002).

    Google Scholar 

  8. C. Casella , Nucl. Phys. A 706, 203 (2002).

    Google Scholar 

  9. A. Formicola , Nucl. Instrum. Methods A 507, 609 (2003).

    Google Scholar 

  10. U. Schröder , Nucl. Phys. A 467, 240 (1987).

    Google Scholar 

  11. A. Formicola , Nucl. Phys. A 719, 94c (2003).

    Google Scholar 

  12. A. Formicola , Phys. Lett. B 591, 61 (2004).

    Google Scholar 

  13. A. Formicola, A new study of $^{14}N(p,\gamma)^{15}O$ at low energy, PhD Thesis, Ruhr-Universität Bochum, 2004.

  14. E. Adelberger , Rev. Mod. Phys. 70, 1265 (1998).

    Google Scholar 

  15. C. Angulo , Nucl. Phys. A 656, 3 (1999).

    Google Scholar 

  16. J.N. Bahcall, M.H. Pinsonneault, Phys. Rev. Lett. 92, 121301 (2004).

    Google Scholar 

  17. G. Imbriani , Astron. Astrophys. 420, 625 (2004).

    Google Scholar 

  18. E. Degl’Innocenti , Phys. Lett. B 590, 13 (2004).

    Google Scholar 

  19. LUNA Collaboration, LNGS Annu. Rep. 2003, 159 (2003).

    Google Scholar 

  20. S. Ahlen , Phys. Lett. B 249, 149 (1990).

    Google Scholar 

  21. H. Wulandari , hep-ex/0401032 (2004).

  22. P. Belli , Nuovo Cimento A 101, 959 (1989).

    Google Scholar 

  23. H. Wulandari , Astropart. Phys. 22, 313 (2004).

    Google Scholar 

  24. R. Wordel , Nucl. Instrum. Methods A 369, 557 (1996).

    Google Scholar 

  25. G. Heusser, Nucl. Instrum. Methods B 83, 223 (1993).

    Google Scholar 

  26. C. Arpesella, Appl. Radiat. Isot. 47, 991 (1996).

    Google Scholar 

  27. G. Fiorentini , Z. Phys. A 350, 289 (1995).

    Google Scholar 

  28. G. Müller , Nucl. Instrum. Methods A 295, 133 (1990).

    Google Scholar 

  29. F. Becchetti , Nucl. Instrum. Methods 225, 280 (1984).

    Google Scholar 

  30. Z. Dlouhý , Nucl. Instrum. Methods A 317, 604 (1992).

    Google Scholar 

  31. F. Strieder , Nucl. Phys. A 718, 135c (2003).

    Google Scholar 

  32. D. Bemmerer, Experimental study of the ${^{14}N}(p,\gamma){^{15}O}$ reaction at energies far below the Coulomb barrier, PhD Thesis, Technische Universität Berlin, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bemmerer .

Additional information

S. Kubono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bemmerer , D., Confortola, F., Lemut, A. et al. Feasibility of low-energy radiative-capture experiments at the LUNA underground accelerator facility. Eur. Phys. J. A 24, 313–319 (2005). https://doi.org/10.1140/epja/i2004-10135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2004-10135-4

PACS.

Navigation