[go: up one dir, main page]

Skip to main content
Log in

Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

Methods for the combined use of mathematical models and observational data for studying and forecasting the evolution of natural processes in the atmosphere, ocean, and environment are presented. Variational principles for estimation of functionals defined on a set of functions of state, parameters and sources of models of processes are a theoretical background. Mathematical models with allowance for uncertainties are considered as constraints to the class of functions. Attention is focused on methods of successive data assimilation and on inverse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brayson, A. and Ho, Yu-Chi, Prikladnaya teoriya optimal’nogo upravleniya (Applied Optimal Control Theory),Moscow: Mir, 1972.

    Google Scholar 

  2. Bensoussan, A., Lions, J.-L., and Temam, R., Methods of Decomposition, Decentralization, Coordination, and Their Applications, in Metody vychislitel’noi matematiki (Methods of Numerical Mathematics), Novosibirsk: Nauka, 1975, pp. 144–271.

    Google Scholar 

  3. Weinberg, A. and Wigner, E., Fizicheskaya teoriya yadernykh reaktorov (Physical Theory of Nuclear Reactors),Moscow: For. Lit. Publ., 1961.

    Google Scholar 

  4. Collatz, L., Funktsional’nyi analiz i vychislitel’naya matematika (Functional Analysis and Numerical Mathematics),Moscow: Mir, 1969.

    Google Scholar 

  5. Marchuk, G.I., Metody rascheta yadernykh reaktorov (Methods of Designing Nuclear Reactors), Moscow: Gosatomizdat, 1961.

    Google Scholar 

  6. Marchuk, G.I., Chislennoe reshenie zadach dinamiki atmosfery i okeana (Numerical Solution of Problems of Atmospheric and Oceanic Dynamics), Leningrad: Gidrometeoizdat, 1974.

    Google Scholar 

  7. Marchuk, G.I., Sopryazhennye uravneniya i analiz slozhnykh sistem (Adjoint Equations and Analysis of Complex Systems),Moscow: Nauka, 1992.

    MATH  Google Scholar 

  8. Penenko, A.V., Some Theoretical and Applied Issues of Successive Variational Data Assimilation, Vych. Tekhn., Special Issue, Part 2, Novosibirsk, 2006, vol. 11, pp. 35–40.

    Google Scholar 

  9. Penenko, V.V., Computational Aspects of Modeling the Dynamics of Atmospheric Processes and Estimation of the Influence of Various Factors on the Atmospheric Dynamics, Nekotorye problemy vychislitelnoi i prikladnoi matematiki (Some Problems of Numerical and Applied Mathematics), Novosibirsk: Nauka, 1975, pp. 61–76.

    Google Scholar 

  10. Penenko, V.V., Metody chislennogo modelirovaniya atmosfernykh protsessov (Methods of Numerical Simulation of Atmospheric Processes), Leningrad: Gidrometeoizdat, 1981.

    Google Scholar 

  11. Penenko, V.V., System Organization of Mathematical Models for Problems of Atmosphere, Ocean, and Environment Physics,Preprint of Computer Center, Siberian Branch Russian Acad. Sci., Novosibirsk, 1985, Preprint no. 619.

    Google Scholar 

  12. Penenko, V.V., Variational Principles and Optimization in Interrelated Problems of Ecology and Climate, Proc. Int. Conf. on Numerical Mathematics and Mathematical Modeling, Moscow: Institute of Numerical Mathematics, 2000, vol. I, pp. 135–148.

    Google Scholar 

  13. Penenko, V.V., Variational Data Assimilation in Real Time, Vych. Tekhn., Special Issue, Part 1, 2005, vol. 10, pp. 9–20.

    MATH  Google Scholar 

  14. Penenko, V.V. and Aloyan, A.E., Modeli i metody dlya zadach okhrany okruzhayushchei sredy (Models and Methods for Environmental Problems), Novosibirsk: Nauka, 1985.

    Google Scholar 

  15. Penenko, V.V. and Obraztsov, N.N., A Variational Initialization Method for the Fields of Meteorological Elements, Meteor. Gidrol., 1976, no. 11, pp. 3–16.

  16. Samarskii, A.A. and Vabishchevich, P.N., Additivnye skhemy dlya zadach matematicheskoi fiziki (Additive Schemes for Problems of Mathematical Physics),Moscow: Nauka, 2001.

    Google Scholar 

  17. Cea, J., Optimizatsiya. Teoriya i algoritmy (Optimization. Theory and Algorithms), Moscow: Mir, 1973.

    Google Scholar 

  18. Schwartz, L., Analiz (Analysis),Moscow: Mir, 1972.

    Google Scholar 

  19. Cacuci, D.G., Sensitivity Theory for Nonlinear System. I. Nonlinear Functional Analysis Approach, J.Math. Phys., 1981, vol. 22, pp. 2794–2802.

    Article  MathSciNet  Google Scholar 

  20. Cacuci, D.G., Sensitivity Theory for Nonlinear System. II. Extensions to Additional Classes of Responses, J. Math. Phys., 1981, vol. 22, pp. 2803–2812.

    Article  MathSciNet  Google Scholar 

  21. Courtier, P., Th’epaut, J.N., and Hollingsworth, A., A Strategy for Operational Implementation of 4D-Var, Using an Incremental Approach, Q. J. R. Meteor. Soc., 1994, vol. 120, pp. 1367–1387.

    Article  Google Scholar 

  22. Daescu, D. and Carmichael, G., An Adjoint Sensitivity Method for the Adaptive Location of the Observations in Air Quality Modeling, J. Atmos. Sci., 2003, vol. 60, no. 1, pp. 434–449.

    Article  Google Scholar 

  23. Daley, R.A., Atmospheric Data Assimilation, New York: Cambridge Univ. Press, 1991.

    Google Scholar 

  24. Le Dimet, F. and Talagrand, O., Variational Algorithms for Analysis and Assimilation of Meteorological Observations: Theoretical Aspects, Tellus, 1986, vol. 38A, pp. 97–110.

    Article  Google Scholar 

  25. Elbern, H., Strunk, A. Schmidt, H., and Talagrand, O., Emission Rate and Chemical State Estimation by 4-Dimensional Variational Inversion, Atmos. Chem. Phys., 2007, vol. 7, pp. 3749–3769.

    Article  Google Scholar 

  26. Evensen, G. and Fario, N., Solving for the Generalized Inverse of the Lorenz Model, J. Meteor. Soc. Japan, 1997, vol. 75, pp. 229–243.

    Google Scholar 

  27. Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems, Trans. ASME J. Basic Eng., 1960, vol. 82, pp. 34–35.

    Google Scholar 

  28. Kalman, R.E. and Bucy, R.S., New Results in Linear Filtering and Prediction Theory, Trans. ASME, Ser. D, J. Basic Eng., 1961, vol. 83, pp. 95–107.

    MathSciNet  Google Scholar 

  29. Lorenc, A.C., Analysis Methods for Numerical Weather Prediction, Q. J. R. Meteorol. Soc., 1986, vol. 112, pp. 1177–1194.

    Article  Google Scholar 

  30. Lorenc, A.C., Optimal Nonlinear Objective Analysis, Q. J. R. Meteorol. Soc., 1988, vol. 114, pp. 205–240.

    Article  Google Scholar 

  31. Penenko, V.V., Some Aspects of Mathematical Modeling Using Models together with Observational Data, Bull. NCC, Ser.: Num. Model. Atmosph., 1996, no. 4, pp. 32–51.

  32. Penenko, V.V. and Tsvetova, E.A., Variational Fast Data Assimilation Algorithms, Research Activ. Atm. Oc. Model., 2002, WGNE Blue Book Web Site, http://www.cmc.ec.gc.ca/rpn/wgne 01-48.

  33. Penenko, V.V. and Tsvetova, E.A., Orthogonal Decomposition Methods for the Inclusion of Climatic Data into Environmental Studies, Ecol. Model., 2008, vol. 217, pp. 279–291.

    Article  Google Scholar 

  34. Penenko, V.V. and Tsvetova, E.A., Discrete-Analytical Methods for the Implementation of Variational Principles in Environmental Applications, J. Comp. Appl. Math., 2009, vol. 226, pp. 319–330.

    Article  MATH  MathSciNet  Google Scholar 

  35. Sasaki, I., An Objective Analysis Based on Variational Method, J. Meteor. Soc. Japan, 1958, vol. 36, no. 3, pp. 29–30.

    Google Scholar 

  36. Talagrand, O. and Courtier, P., Variational Assimilation of Meteorological Observations with the Adjoint Vorticity Equation. I: Theory, Quart. J. Roy. Meteor. Soc., 1987, vol. 113, pp. 1311–1328.

    Article  Google Scholar 

  37. Trevisan, A. and Uboldi, F., Assimilation of Standard and Targeted Observations within the Unstable Subspace of the Observation-Analysis-Forecast Cycle System, J. Atmos. Sci., 2004, vol. 65, no. 1, pp. 103–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Penenko.

Additional information

Original Russian Text © V.V. Penenko, 2009, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2009, Vol. 12, No. 4, pp. 421–434.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penenko, V.V. Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment. Numer. Analys. Appl. 2, 341–351 (2009). https://doi.org/10.1134/S1995423909040065

Download citation

  • Received:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1134/S1995423909040065

Key words