Abstract
Methods for the combined use of mathematical models and observational data for studying and forecasting the evolution of natural processes in the atmosphere, ocean, and environment are presented. Variational principles for estimation of functionals defined on a set of functions of state, parameters and sources of models of processes are a theoretical background. Mathematical models with allowance for uncertainties are considered as constraints to the class of functions. Attention is focused on methods of successive data assimilation and on inverse problems.
Similar content being viewed by others
References
Brayson, A. and Ho, Yu-Chi, Prikladnaya teoriya optimal’nogo upravleniya (Applied Optimal Control Theory),Moscow: Mir, 1972.
Bensoussan, A., Lions, J.-L., and Temam, R., Methods of Decomposition, Decentralization, Coordination, and Their Applications, in Metody vychislitel’noi matematiki (Methods of Numerical Mathematics), Novosibirsk: Nauka, 1975, pp. 144–271.
Weinberg, A. and Wigner, E., Fizicheskaya teoriya yadernykh reaktorov (Physical Theory of Nuclear Reactors),Moscow: For. Lit. Publ., 1961.
Collatz, L., Funktsional’nyi analiz i vychislitel’naya matematika (Functional Analysis and Numerical Mathematics),Moscow: Mir, 1969.
Marchuk, G.I., Metody rascheta yadernykh reaktorov (Methods of Designing Nuclear Reactors), Moscow: Gosatomizdat, 1961.
Marchuk, G.I., Chislennoe reshenie zadach dinamiki atmosfery i okeana (Numerical Solution of Problems of Atmospheric and Oceanic Dynamics), Leningrad: Gidrometeoizdat, 1974.
Marchuk, G.I., Sopryazhennye uravneniya i analiz slozhnykh sistem (Adjoint Equations and Analysis of Complex Systems),Moscow: Nauka, 1992.
Penenko, A.V., Some Theoretical and Applied Issues of Successive Variational Data Assimilation, Vych. Tekhn., Special Issue, Part 2, Novosibirsk, 2006, vol. 11, pp. 35–40.
Penenko, V.V., Computational Aspects of Modeling the Dynamics of Atmospheric Processes and Estimation of the Influence of Various Factors on the Atmospheric Dynamics, Nekotorye problemy vychislitelnoi i prikladnoi matematiki (Some Problems of Numerical and Applied Mathematics), Novosibirsk: Nauka, 1975, pp. 61–76.
Penenko, V.V., Metody chislennogo modelirovaniya atmosfernykh protsessov (Methods of Numerical Simulation of Atmospheric Processes), Leningrad: Gidrometeoizdat, 1981.
Penenko, V.V., System Organization of Mathematical Models for Problems of Atmosphere, Ocean, and Environment Physics,Preprint of Computer Center, Siberian Branch Russian Acad. Sci., Novosibirsk, 1985, Preprint no. 619.
Penenko, V.V., Variational Principles and Optimization in Interrelated Problems of Ecology and Climate, Proc. Int. Conf. on Numerical Mathematics and Mathematical Modeling, Moscow: Institute of Numerical Mathematics, 2000, vol. I, pp. 135–148.
Penenko, V.V., Variational Data Assimilation in Real Time, Vych. Tekhn., Special Issue, Part 1, 2005, vol. 10, pp. 9–20.
Penenko, V.V. and Aloyan, A.E., Modeli i metody dlya zadach okhrany okruzhayushchei sredy (Models and Methods for Environmental Problems), Novosibirsk: Nauka, 1985.
Penenko, V.V. and Obraztsov, N.N., A Variational Initialization Method for the Fields of Meteorological Elements, Meteor. Gidrol., 1976, no. 11, pp. 3–16.
Samarskii, A.A. and Vabishchevich, P.N., Additivnye skhemy dlya zadach matematicheskoi fiziki (Additive Schemes for Problems of Mathematical Physics),Moscow: Nauka, 2001.
Cea, J., Optimizatsiya. Teoriya i algoritmy (Optimization. Theory and Algorithms), Moscow: Mir, 1973.
Schwartz, L., Analiz (Analysis),Moscow: Mir, 1972.
Cacuci, D.G., Sensitivity Theory for Nonlinear System. I. Nonlinear Functional Analysis Approach, J.Math. Phys., 1981, vol. 22, pp. 2794–2802.
Cacuci, D.G., Sensitivity Theory for Nonlinear System. II. Extensions to Additional Classes of Responses, J. Math. Phys., 1981, vol. 22, pp. 2803–2812.
Courtier, P., Th’epaut, J.N., and Hollingsworth, A., A Strategy for Operational Implementation of 4D-Var, Using an Incremental Approach, Q. J. R. Meteor. Soc., 1994, vol. 120, pp. 1367–1387.
Daescu, D. and Carmichael, G., An Adjoint Sensitivity Method for the Adaptive Location of the Observations in Air Quality Modeling, J. Atmos. Sci., 2003, vol. 60, no. 1, pp. 434–449.
Daley, R.A., Atmospheric Data Assimilation, New York: Cambridge Univ. Press, 1991.
Le Dimet, F. and Talagrand, O., Variational Algorithms for Analysis and Assimilation of Meteorological Observations: Theoretical Aspects, Tellus, 1986, vol. 38A, pp. 97–110.
Elbern, H., Strunk, A. Schmidt, H., and Talagrand, O., Emission Rate and Chemical State Estimation by 4-Dimensional Variational Inversion, Atmos. Chem. Phys., 2007, vol. 7, pp. 3749–3769.
Evensen, G. and Fario, N., Solving for the Generalized Inverse of the Lorenz Model, J. Meteor. Soc. Japan, 1997, vol. 75, pp. 229–243.
Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems, Trans. ASME J. Basic Eng., 1960, vol. 82, pp. 34–35.
Kalman, R.E. and Bucy, R.S., New Results in Linear Filtering and Prediction Theory, Trans. ASME, Ser. D, J. Basic Eng., 1961, vol. 83, pp. 95–107.
Lorenc, A.C., Analysis Methods for Numerical Weather Prediction, Q. J. R. Meteorol. Soc., 1986, vol. 112, pp. 1177–1194.
Lorenc, A.C., Optimal Nonlinear Objective Analysis, Q. J. R. Meteorol. Soc., 1988, vol. 114, pp. 205–240.
Penenko, V.V., Some Aspects of Mathematical Modeling Using Models together with Observational Data, Bull. NCC, Ser.: Num. Model. Atmosph., 1996, no. 4, pp. 32–51.
Penenko, V.V. and Tsvetova, E.A., Variational Fast Data Assimilation Algorithms, Research Activ. Atm. Oc. Model., 2002, WGNE Blue Book Web Site, http://www.cmc.ec.gc.ca/rpn/wgne 01-48.
Penenko, V.V. and Tsvetova, E.A., Orthogonal Decomposition Methods for the Inclusion of Climatic Data into Environmental Studies, Ecol. Model., 2008, vol. 217, pp. 279–291.
Penenko, V.V. and Tsvetova, E.A., Discrete-Analytical Methods for the Implementation of Variational Principles in Environmental Applications, J. Comp. Appl. Math., 2009, vol. 226, pp. 319–330.
Sasaki, I., An Objective Analysis Based on Variational Method, J. Meteor. Soc. Japan, 1958, vol. 36, no. 3, pp. 29–30.
Talagrand, O. and Courtier, P., Variational Assimilation of Meteorological Observations with the Adjoint Vorticity Equation. I: Theory, Quart. J. Roy. Meteor. Soc., 1987, vol. 113, pp. 1311–1328.
Trevisan, A. and Uboldi, F., Assimilation of Standard and Targeted Observations within the Unstable Subspace of the Observation-Analysis-Forecast Cycle System, J. Atmos. Sci., 2004, vol. 65, no. 1, pp. 103–113.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.V. Penenko, 2009, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2009, Vol. 12, No. 4, pp. 421–434.
Rights and permissions
About this article
Cite this article
Penenko, V.V. Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment. Numer. Analys. Appl. 2, 341–351 (2009). https://doi.org/10.1134/S1995423909040065
Received:
Published:
Issue date:
DOI: https://doi.org/10.1134/S1995423909040065

