[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Thermographic, ultrasonic and optical methods: A new dimension in veneered wood diagnostics

  • Thermal Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Modern production techniques in the wood-based industry reached a high quality standard at high output rates. While the speed of the production machines increases, it is necessary to introduce modern and faster working online inspection methods to supervise constantly the material for defects. For example, thermographic cameras are able to detect not only invisible defects within wood-based materials like laminated particle and fiberboards, but can be used also to detect defects in lumber and veneered wood [1–4]. In the latter case, there is the need to inspect more accurately the final pieces, given the exponential growth in worldwide sales. Therefore, in order to minimize adhesion problems [5], detecting surface and sub-surface cracks, define the geometry of the sub-surface detachment, in the veneered wood products, an integrated non-destructive test method is needed both during the production process that after to it [6]. Our system can provide a continuous control of the process and the product. In fact, this study compares the performance of transient thermography, three optical methods and ultrasonic testing applied together on a veneered wood sample with real and fabricated defects. The use of phase-shifting holography correlated to Double-Exposure HI and the wavelet transform applied as fusion of images between Thermographic Signal Reconstruction and Double-Exposure HI, are explored in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Meinlschmidt, P. and Sembach, J., Industrial thermographic inspection of delaminations in laminated wood-based panels, 3 rd European Workshop on Non-Destructive Testing of Panel Products, UK, Llandudno, 1999.

    Google Scholar 

  2. Meinlschmidt, P., Schluter, F., Märgner, V., and El-Abed, H., Online detection of bonding defects in paper laminating using thermography, 7 th European Panel Products Symposium, UK, Llandudno, 2003.

    Google Scholar 

  3. Wu, D., Salerno, A., Sembach, J., Maldague, X., Rantala, J., and Busse, G., Lock-in thermographic inspection of wood particle boards, Proc. SPIE, 1997, vol. 3056, pp. 230–234.

    Article  Google Scholar 

  4. Sembach, J., Wu, D., Salerno, A., Hora, G., and Busse, G., Non-destructive evaluation of delaminations in laminated wood-based panels by thermographical inspection tools, Proc. of Workshop on Non-Destructive Testing of Panel Products, UK, Llandudno, 1997.

    Google Scholar 

  5. Berglind, H. and Dillenz, A., Detecting glue deficiency in laminated wood: a thermography method comparison, NDT&E Int., 2003, vol. 36, pp. 395–399.

    Article  Google Scholar 

  6. Sfarra, S., Theodorakeas, P., Ibarra-Castanedo, C., Avdelidis, N.P., Paoletti, A., Paoletti, D., Hrissagis, K., Bendada, A., Koui, M., and Maldague, X., Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques, Insight, 2012, vol. 54, no. 1, pp. 21–27.

    Article  Google Scholar 

  7. Unger, A., Schniewind, A.P., and Unger, W., Conservation of Wood Artifacts, Berlin: Springer-Verlag, 2001.

    Book  Google Scholar 

  8. Tiitta, M., Tomppo, L., and Acosta, D., Novel non-destructive methods for wood, The Future of Quality Control for Wood & Wood Products, The Final Conference of COST Action E53, Edinburgh, 2010.

    Google Scholar 

  9. Lu, J. and Zou, G.P., Nondestructive testing of wood defects by ESSPI, ICEM 2008, International Conference on Experimental Machanics 2008; Xiaoyuan He, Huimin Xie, Yilan Kang, Eds., Proc. SPIE, 2008, vol. 7375, pp. 73753G-1–73753G-6.

    Google Scholar 

  10. Bucur, V., Acoustics of wood, in Springer Series in Wood Sciences, Berlin: Springer-Verlag, 2006.

    Google Scholar 

  11. Sandoz, J.L., Ultrasonic solid wood evaluation in industrial applications, 10th International Symposium on Nondestructive Testing of Wood, Lausanne, 1996.

    Google Scholar 

  12. Wyckhuyse, A. and Maldague, X., A study of wood inspection by infrared thermography, Part I: Wood pole inspection by infrared thermography, Res. Nondes. Eval., 2001, vol. 13, no. 1, pp. 1–12.

    Google Scholar 

  13. Wyckhuyse, A. and Maldague X., A study of wood inspection by infrared thermography, Part II: Thermography for wood defects detection, Res. Nondes. Eval., 2001, vol. 13, no. 1, pp. 13–22.

    Google Scholar 

  14. Osterloh, K., Raedel, C., Zscherpel, U., Meinel, D., Ewert, U., Buecherl, T., and Hasenstab, A., Radiographic and tomographic inspection of wooden specimens with fission neutrons, 17 th World Conference on NDT, Shanghai, 2008.

    Google Scholar 

  15. Wolter, B., Netzelmann, U., and Dobmann, G., Nondestructive testing of wood using a single sided nuclear magnetic resonance device, 10 th International Symposium on Nondestructive Testing of Wood, Lausanne, 1996.

    Google Scholar 

  16. Jones, P.D., Schimleck, L.R., Peter, G.F., Daniels, R.F., and Clark, A., Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy, Wood Sci. Technol., 2006, vol. 40, no. 8, pp. 709–720.

    Article  CAS  Google Scholar 

  17. Závodská, L. and Lesný, J., Recent development in lignite investigation, HEJ Manuscript, no. ENV-061026-A, HU ISSN 1418-7108.

  18. Ibarra-Castanedo, C., Sfarra, S., Ambrosini, D., Paoletti, D., Bendada, A., and Maldague, X., Diagnostics of panel paintings using holographic interferometry and pulsed thermography, Quantitative InfraRed Thermography J., 2010, vol. 7, no. 1, pp. 85–114.

    Article  Google Scholar 

  19. Sfarra, S., Ibarra-Castanedo, C., Ambrosini, D., Paoletti, D., Bendada, A., and Maldague, X., An integrated approach between pulsed thermography (PT), Near-Infrared (NIR) Reflectography and Sandwich Holography (SH) for wooden panel paintings advanced monitoring, Russ. J. NDT, 2011, vol. 47, no. 4, pp. 284–293.

    CAS  Google Scholar 

  20. Thomas, R.A., Thermography monitoring handbook, in Machine and Systems Condition Monitoring Series, U.K.: Coxmoor Publishing Company, 1999.

    Google Scholar 

  21. Shepard, S.M., Introduction to active thermography for non-destructive evaluation, Anti-Corros. Meth. Mater. J., 1997, vol. 44, pp. 236–239.

    Article  Google Scholar 

  22. Maldague, X.P.V., Nondestructive Evaluation of Materials by Infrared Thermography, London: Springer-Verlag, 1993.

    Book  Google Scholar 

  23. Almond, D.P. and Peng, W., Thermal imaging of composites, Microscop. J., 2001, vol. 201, pp. 163–170.

    Article  CAS  Google Scholar 

  24. Vavilov, V.P. and Taylor, R., Theoretical and practical aspects of the thermal NDT of bonded structures, in Research Techniques in NDT, Sharpe, R., Ed., London: Academic Press, 1982, vol. 5, pp. 239–280.

    Google Scholar 

  25. Maldague, X., Galmiche, F., and Ziadi, A., Infrared Phys. J., 2002, vol. 43, pp. 175–181.

    Article  Google Scholar 

  26. Avdelidis, N.P., Hawtin, B.C., and Almond, D.P., NDT&E Int. J., 2003, vol. 36, pp. 433–439.

    Article  CAS  Google Scholar 

  27. Sakagami, T. and Kubo, S., Infrared Phys. Technol. J., 2002, vol. 43, pp. 211–218.

    Article  Google Scholar 

  28. Krapez, J.C., Lepoutre, F., and Balageas, D., J. Phys., 1994, vol. 4, pp. 47–50.

    Google Scholar 

  29. Shepard, S.M., Advances in pulsed thermography, in Thermosense XXIII, Rozlosnik, A.E. and Dinwiddie, R.B., Eds., 2001, vol. 4360, pp. 511–515, http://dx.doi.org/10.1117/12.421032.

    Article  Google Scholar 

  30. Ludwig, N. and Teruzzi, P.J., Infrared Phys. Technol., 2002, vol. 43, pp. 297–231.

    Article  Google Scholar 

  31. Saintey, M.B. and Almond, D.P., J. Phys., 1995, vol. 28, pp. 2539–2546.

    CAS  Google Scholar 

  32. Avdelidis, N.P. and Almond, D.P., Infrared Phys. Technol., 2004, vol. 45, pp. 103–114.

    Article  CAS  Google Scholar 

  33. Avdelidis, N.P. and Moropoulou, A., Infrared thermography. Philosophy, history, approaches, applications, standards, 2 nd Balkan Conference of BSNDT and 4th National Conference of HSNT, Greece, Athens, 2002.

    Google Scholar 

  34. Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Ahmed, T., and Wang, D., Enhancement and reconstruction of thermographic NDT data, in Thermosense XXIV, Rozlosnik, A.E. and Maldague, X.P., Eds., 2002, vol. 4710, pp. 531–535, http://dx.doi.org/10.1117/12.459603.

    Article  Google Scholar 

  35. Shepard, S.M., US Patent 6516084, 2003.

  36. Shepard, S.M., Lhota, J.R., Rubadeux, A., Wang, D., and Ahmed, T., Opt. Eng., 2003, vol. 42, pp. 1337–1342.

    Article  Google Scholar 

  37. Ibarra-Castanedo, C., Avdelidis, N.P., Grenier M., Maldague, X., and Bendada, A., in Thermosense XXII, Dinwiddie, R.B. and Morteza, S., Eds., 2010, vol. 7661, pp. 76610O-1–76610O-9, http://dx.doi.org/10.1117/12.850733.

    Google Scholar 

  38. Kock, W.E., Lasers and Holography: an Introduction to Coherent Optics, N.Y.: Dover Publications Inc., 1981.

    Google Scholar 

  39. Sirohi, R.S. and Chau, F.S., Optical methods of measurement, in Wholefield Techniques, U.S.A.: Marcel Dekker Inc., 1999, pp. 77–78.

    Google Scholar 

  40. Vest, C.M., Holographic Interferometry, New York: Wiley, 1971.

    Google Scholar 

  41. Yamaguchi, I. and Zhang, T., Opt. Lett., 1997, vol. 22, pp. 1268–1270.

    Article  CAS  Google Scholar 

  42. Doh, K., Poon, T.-C., Wu, M., Shinoda, K., and Suzuki, Y., Laser Opt. Technol., 1996, vol. 28, pp. 135–141.

    Article  Google Scholar 

  43. Poon, T.-C., Optical Scanning Holography with Matlab.

  44. Mallat, S.G., IEEE Trans. Acoust., Speech Signal Process. Patt., 1989, vol. 37, pp. 2091–2110.

    Article  Google Scholar 

  45. Pajares, G. and Cruz, J., Pat. Rec., 2004, vol. 37, pp. 1855–1872.

    Article  Google Scholar 

  46. De, I. and Chanda, B., Signal Process., 2006, vol. 86, pp. 924–936.

    Article  Google Scholar 

  47. Toet, A., Pat. Rec. Lett., 1989, vol. 9, pp. 245–253.

    Article  Google Scholar 

  48. Li, H., Manjunath, B.S., and Mitra, S.K., Graph. Models Image Process., 1995, vol. 57, pp. 235–245.

    Article  Google Scholar 

  49. Li, M., Cai, W. and Tan, Z., Pat. Rec. Lett., 2006, vol. 16, pp. 1948–1956.

    Article  Google Scholar 

  50. Hung, Y.Y., Appl. Opt., 1979, vol. 18, pp. 1046–1105.

    Article  CAS  Google Scholar 

  51. Hung, Y.Y., Opt. Lasers Eng., 1996, vol. 24, pp. 161–182.

    Article  Google Scholar 

  52. Fotakis, C., Anglos, D., Zafiropulos, V., Georgiou, S., and Tornari, V., Lasers in the preservation of cultural heritage, in Principles and Applications, U.S.A.: RC Press, 2007.

    Google Scholar 

  53. Dainty, J.C., Lasers Speckle and Related Phenomena, Berlin: Springer-Verlag, 1975.

    Google Scholar 

  54. Goodman, J.W., Statistical Optics, N.Y.: Wiley, 2000.

    Google Scholar 

  55. Burch, J.M. and Tokarski, J.M.J., Opt. Acta, 1968, vol. 15, p. 101.

    Google Scholar 

  56. Sirohi, R.S., Speckle Metrology, N.Y.: Marcel Dekker Inc., 1993.

    Google Scholar 

  57. Rastogi, P.K., Digital Speckle Pattern Interferometry and Related Techniques, Chichester: Wiley & Sons, 2001.

    Google Scholar 

  58. Fomin, N.A., Speckle Photography for Fluid Mechanics Measurements, Berlin: Springer-Verlag, 1998.

    Book  Google Scholar 

  59. Sjödahl, M., Digital speckle photography, in Digital Speckle Pattern Interferometry and Related Techniques, Rastogi, P.K., Ed., Chichester: Wiley & Sons, 2001.

    Google Scholar 

  60. Schirripa Spagnolo, G., Paoletti, D., and Ambrosini, D., Opt. Commun., 1999, vol. 169, p. 51.

  61. Sjödahl, M., Appl. Opt., 1997, vol. 36, p. 2875.

    Article  Google Scholar 

  62. Hinsch, K.D., Gülker, G., Hinrichs, H., and Joost, H., Artwork monitoring by digital image correlation, in Laser in the Conservation of Artworks, Springer Proceedings in Physics 100, Dickmann, K., Fotakis, C., Asmus, J.F., Eds., Berlin: Springer-Verlag, 2005.

    Google Scholar 

  63. Groves, R.M., Fu, S., James, S.W., and Tatam, R.P., Opt. Eng., 2005, vol. 44, p. 025602.

    Article  Google Scholar 

  64. Bhaduri, B., Tay, C.J., Quan, C., Niu, H., and Sjödahl, M., Opt. Comm., 2011, vol. 284, p. 2437.

    Article  CAS  Google Scholar 

  65. Recuero, S., Bonab, M.T., Andrés, N., Andrés, J.M., and Angurel, L.A., J. Europ. Ceram. Soc., 2008, vol. 28, p. 2239.

    Article  CAS  Google Scholar 

  66. Sveen, J.K., The MatPIV Home, May 15, 2012, http://www.math.uio.no/~jks/matpiv, 2004.

    Google Scholar 

  67. Sfarra, S., Bendada, A., Paoletti, A., Paoletti, D., Ambrosini, D., Ibarra-Castanedo, C., and Maldague, X., Square Pulse Thermography (SPT) and Digital Speckle Photography (DSP): non destructive techniques (NDT) applied to the defects detection in aerospace materials, 2 nd International Symposium on NDT in Aerospace [CD-ROM], Hamburg, 2010.

    Google Scholar 

  68. Standard practice measuring velocity in materials, ASTM 984-89, 1989.

  69. Mal, A.K. and Bar-Cohen, Y., Ultrasonic NDE of bonded solids, Proc. of the Int. Workshop on NDE of Performance of Civil Structures, Los Angeles, 1988.

    Google Scholar 

  70. Tanasoiu, V., Miclea, C., and Tanasoiu, C., J. Optoelectron. Advanced Mater., 2002, vol. 4, pp. 949–957.

    Google Scholar 

  71. Kaely, V.C., High Wycombe, 1985, vol. 3, p. 27.

    Google Scholar 

  72. Mc Donald, K.A., Lumber quality evaluation using ultrasonics, Proc. of the Symposium on Nondestructive Testing of Wood, Pullman (WA), 1978.

    Google Scholar 

  73. Gonzales, R.C. and Woods, R.E., Chapter 10: Image Segmentation, Digital Image Processing, 3rd Ed., U.S.A.: Prentice-Hill, 2008.

    Google Scholar 

  74. U.S.D.A., The Encyclopedia of Wood, Canada: Skyhorse Publishing Inc., 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sfarra.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sfarra, S., Theodorakeas, P., Avdelidis, N.P. et al. Thermographic, ultrasonic and optical methods: A new dimension in veneered wood diagnostics. Russ J Nondestruct Test 49, 234–250 (2013). https://doi.org/10.1134/S1061830913040062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830913040062

Key words