Computer-Aided Diagnosis (CADx) systems for characterization of Narrow-Band Imaging (NBI) videos of suspected lesions in Barrett’s Esophagus (BE) can assist endoscopists during endoscopic surveillance. The real clinical value and application of such CADx systems lies in real-time analysis of endoscopic videos inside the endoscopy suite, placing demands on robustness in decision making and insightful classification matching with the clinical opinions. In this paper, we propose a lightweight int8-based quantized neural network architecture supplemented with an efficient stability function on the output for real-time classification of NBI videos. The proposed int8-architecture has low-memory footprint (4.8 MB), enabling operation on a range of edge devices and even existing endoscopy equipment. Moreover, the stability function ensures robust inclusion of temporal information from the video to provide a continuously stable video classification. The algorithm is trained, validated and tested with a total of 3,799 images and 284 videos of in total 598 patients, collected from 7 international centers. Several stability functions are experimented with, some of them being clinically inspired by weighing low-confidence predictions. For the detection of early BE neoplasia, the proposed algorithm achieves a performance of 92.8% accuracy, 95.7% sensitivity, and 91.4% specificity, while only 5.6% of the videos are without a final video classification. This work shows a robust, lightweight and effective deep learning-based CADx system for accurate automated real-time endoscopic video analysis, suited for embedding in endoscopy clinical practice.
|