Abstract
Massive black holes (MBHs) inhabit galactic centres, and power luminous quasars and active galactic nuclei, shaping their cosmic environment with the energy they produce. The origins of MBHs remain a mystery, and the recent detection by LIGO/Virgo of a black hole of almost 150 solar masses has revitalized the questions of whether there is a continuum between ‘stellar’ and ‘massive’ black holes, and what the seeds of MBHs are. Seeds could have formed in the first galaxies or could be related to the collapse of horizon-sized regions in the early Universe. Understanding the origins of MBHs straddles fundamental physics, cosmology and astrophysics, and bridges the fields of gravitational-wave physics and traditional astronomy. With several existing and upcoming facilities in the next 10–15 years, we foresee the possibility of discovering the avenues of formation of MBHs. This Review links three main topics: the channels of black hole seed formation, the journey from seeds to MBHs, and the diagnostics on the origins of MBHs. We highlight and critically discuss current unsolved problems, touching on recent developments.
Key points
-
The discoveries of quasars at cosmic distances and of giant dark massive objects in today’s galaxies provide evidence of the ubiquity of massive black holes (MBHs).
-
Understanding the origins of MBHs goes hand in hand with understanding the origins of the structures inside the cosmic web. MBHs are not born ‘massive’ but must have grown by several orders of magnitude from ‘seed black holes’. Gas accretion and black hole mergers are the drivers of their growth inside galaxies, but there are several bottlenecks in this journey.
-
The origins of MBHs may be from exotic mechanisms or may well lie in known physics — particle, plasma and condensed matter physics, gravity and dynamics — extrapolated to untested regimes.
-
Studying the origins of MBHs is a multi-scale problem: from the Schwarzschild radius to cosmological scales, from subsecond events to the age of the Universe.
-
Paths to seed formation and growth are not mutually exclusive. Constraints will therefore come from a combination of observables: masses, spins, distances, spectra and light curves of populations of black holes. These indirect constraints can confirm that a given path exists but cannot rule out the existence of other paths. A combination of electromagnetic and gravitational-wave observations is the foreseen best strategy to constrain the origins of MBHs.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Nguyen, D. D. et al. Improved dynamical constraints on the masses of the central black holes in nearby low-mass early-type galactic nuclei and the first black hole determination for NGC 205. Astrophys. J. 872, 104 (2019).
Abbott, R. et al. Properties and astrophysical implications of the 150 M⊙ binary black hole merger GW190521. Astrophys. J. Lett. 900, L13 (2020).
Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).
Fan, X. et al. A survey of z > 5.8 quasars in the Sloan digital sky survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z ~ 6. Astron. J. 122, 2833–2849 (2001).
Yu, Q. & Tremaine, S. Observational constraints on growth of massive black holes. Mon. Not. R. Astron. Soc. 335, 965–976 (2002).
Mezcua, M. Observational evidence for intermediate-mass black holes. Int. J. Mod. Phys. D 26, 1730021 (2017).
Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).
Rees, M. J. in Structure and Properties of Nearby Galaxies vol. 77 (eds Berkhuijsen, E. M. & Wielebinski, R.) 237–242 (Springer, 1978).
Inayoshi, K., Visbal, E. & Haiman, Z. The assembly of the first massive black holes. Annu. Rev. Astron. Astrophys. 58, 27–97 (2020).
Palla, F., Salpeter, E. E. & Stahler, S. W. Primordial star formation — the role of molecular hydrogen. Astrophys. J. 271, 632–641 (1983).
Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).
Spera, M., Mapelli, M. & Bressan, A. The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. Mon. Not. R. Astron. Soc. 451, 4086–4103 (2015).
Madau, P. & Rees, M. J. Massive black holes as population III remnants. Astrophys. J. Lett. 551, L27–L30 (2001).
Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the Universe. Science 295, 93–98 (2002).
Greif, T. H. et al. Simulations on a moving mesh: the clustered formation of Population III protostars. Astrophys. J. 737, 75 (2011).
Hosokawa, T. et al. Formation of massive primordial stars: intermittent UV feedback with episodic mass accretion. Astrophys. J. 824, 119 (2016).
Schneider, R., Ferrara, A., Natarajan, P. & Omukai, K. First stars, very massive black holes, and metals. Astrophys. J. 571, 30–39 (2002).
Tarumi, Y., Hartwig, T. & Magg, M. Implications of inhomogeneous metal mixing for stellar archaeology. Astrophys. J. 897, 58 (2020).
Bromm, V. & Loeb, A. Formation of the first supermassive black holes. Astrophys. J. 596, 34–46 (2003).
Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).
Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. R. Astron. Soc. 371, 1813–1823 (2006).
Shang, C., Bryan, G. L. & Haiman, Z. Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir ≳ 104 K. Mon. Not. R. Astron. Soc. 402, 1249–1262 (2010).
Montero, P. J., Janka, H.-T. & Müller, E. Relativistic collapse and explosion of rotating supermassive stars with thermonuclear effects. Astrophys. J. 749, 37 (2012).
Begelman, M. C., Rossi, E. M. & Armitage, P. J. Quasi-stars: accreting black holes inside massive envelopes. Mon. Not. R. Astron. Soc. 387, 1649–1659 (2008).
Haemmerlé, L. et al. Formation of the first stars and black holes. Space Sci. Rev. 216, 48 (2020).
Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. Black hole formation in the early Universe. Mon. Not. R. Astron. Soc. 433, 1607–1618 (2013).
Visbal, E., Haiman, Z. & Bryan, G. L. Direct collapse black hole formation from synchronized pairs of atomic cooling haloes. Mon. Not. R. Astron. Soc. 445, 1056–1063 (2014).
Wise, J. H. et al. Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature 566, 85–88 (2019).
Habouzit, M., Volonteri, M., Latif, M., Dubois, Y. & Peirani, S. On the number density of ‘direct collapse’ black hole seeds. Mon. Not. R. Astron. Soc. 463, 529–540 (2016).
Chon, S., Hosokawa, T. & Omukai, K. Cosmological direct-collapse black hole formation sites hostile for their growth. Mon. Not. R. Astron. Soc. 502, 700–713 (2021).
Regan, J. A. et al. The formation of very massive stars in early galaxies and implications for intermediate mass black holes. Open J. Astrophys. 3, 15 (2020).
Mayer, L. et al. Direct formation of supermassive black holes in metal-enriched gas at the heart of high-redshift galaxy mergers. Astrophys. J. 810, 51 (2015).
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428, 724–726 (2004).
Freitag, M., Gürkan, M. A. & Rasio, F. A. Runaway collisions in young star clusters — II. Numerical results. Mon. Not. R. Astron. Soc. 368, 141–161 (2006).
Mapelli, M. Massive black hole binaries from runaway collisions: the impact of metallicity. Mon. Not. R. Astron. Soc. 459, 3432–3446 (2016).
Reinoso, B., Schleicher, D. R. G., Fellhauer, M., Klessen, R. S. & Boekholt, T. C. N. Collisions in primordial star clusters. Formation pathway for intermediate mass black holes. Astron. Astrophys. 614, A14 (2018).
Chon, S. & Omukai, K. Supermassive star formation via super competitive accretion in slightly metal-enriched clouds. Mon. Not. R. Astron. Soc. 494, 2851–2860 (2020).
Boekholt, T. C. N. et al. Formation of massive seed black holes via collisions and accretion. Mon. Not. R. Astron. Soc. 476, 366–380 (2018).
Tagawa, H., Haiman, Z. & Kocsis, B. Making a supermassive star by stellar bombardment. Astrophys. J. 892, 36 (2020).
Omukai, K., Schneider, R. & Haiman, Z. Can supermassive black holes form in metal-enriched high-redshift protogalaxies? Astrophys. J. 686, 801–814 (2008).
Devecchi, B. & Volonteri, M. Formation of the first nuclear clusters and massive black holes at high redshift. Astrophys. J. 694, 302–313 (2009).
Katz, H., Sijacki, D. & Haehnelt, M. G. Seeding high-redshift QSOs by collisional runaway in primordial star clusters. Mon. Not. R. Astron. Soc. 451, 2352–2369 (2015).
Yajima, H. & Khochfar, S. The role of stellar relaxation in the formation and evolution of the first massive black holes. Mon. Not. R. Astron. Soc. 457, 2423–2432 (2016).
Sakurai, Y., Yoshida, N., Fujii, M. S. & Hirano, S. Formation of intermediate-mass black holes through runaway collisions in the first star clusters. Mon. Not. R. Astron. Soc. 472, 1677–1684 (2017).
Devecchi, B., Volonteri, M., Rossi, E. M., Colpi, M. & Portegies Zwart, S. High-redshift formation and evolution of central massive objects — II. The census of BH seeds. Mon. Not. R. Astron. Soc. 421, 1465–1475 (2012).
Stone, N. C., Küpper, A. H. W. & Ostriker, J. P. Formation of massive black holes in galactic nuclei: runaway tidal encounters. Mon. Not. R. Astron. Soc. 467, 4180–4199 (2017).
Giersz, M., Leigh, N., Hypki, A., Lützgendorf, N. & Askar, A. MOCCA code for star cluster simulations — IV. A new scenario for intermediate mass black hole formation in globular clusters. Mon. Not. R. Astron. Soc. 454, 3150–3165 (2015).
Sigurdsson, S. & Hernquist, L. Primordial black holes in globular clusters. Nature 364, 423–425 (1993).
Miller, M. C. & Hamilton, D. P. Production of intermediate-mass black holes in globular clusters. Mon. Not. R. Astron. Soc. 330, 232–240 (2002).
Lousto, C. O., Campanelli, M., Zlochower, Y. & Nakano, H. Remnant masses, spins and recoils from the merger of generic black hole binaries. Class. Quantum Gravity 27, 114006 (2010).
Gerosa, D. & Berti, E. Escape speed of stellar clusters from multiple-generation black-hole mergers in the upper mass gap. Phys. Rev. D 100, 041301 (2019).
Antonini, F., Gieles, M. & Gualandris, A. Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections. Mon. Not. R. Astron. Soc. 486, 5008–5021 (2019).
Davies, M. B., Miller, M. C. & Bellovary, J. M. Supermassive black hole formation via gas accretion in nuclear stellar clusters. Astrophys. J. Lett. 740, L42 (2011).
Lupi, A., Colpi, M., Devecchi, B., Galanti, G. & Volonteri, M. Constraining the high-redshift formation of black hole seeds in nuclear star clusters with gas inflows. Mon. Not. R. Astron. Soc. 442, 3616–3626 (2014).
Alexander, T. & Natarajan, P. Rapid growth of seed black holes in the early Universe by supra-exponential accretion. Science 345, 1330–1333 (2014).
Arca Sedda, M. et al. Breaching the limit: formation of GW190521-like and IMBH mergers in young massive clusters. Preprint at https://arxiv.org/abs/2105.07003 (2021).
Carr, B. & Kühnel, F. Primordial black holes as dark matter: recent developments. Annu. Rev. Nucl. Part. Sci. 70, annurev (2020).
García-Bellido, J. Primordial black holes and the origin of the matter–antimatter asymmetry. Phil. Trans. R. Soc. Lond. A 377, 20190091 (2019).
Rubin, S. G., Sakharov, A. S. & Khlopov, M. Y. The formation of primary galactic nuclei during phase transitions in the early universe. Sov. J. Exp. Theor. Phys. 92, 921–929 (2001).
Carr, B. & Silk, J. Primordial black holes as generators of cosmic structures. Mon. Not. R. Astron. Soc. 478, 3756–3775 (2018).
Ricotti, M., Ostriker, J. P. & Mack, K. J. Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys. J. 680, 829–845 (2008).
Serpico, P. D., Poulin, V., Inman, D. & Kohri, K. Cosmic microwave background bounds on primordial black holes including dark matter halo accretion. Phys. Rev. Res. 2, 023204 (2020).
Hawking, S. W. Black holes from cosmic strings. Phys. Lett. B 231, 237–239 (1989).
Bramberger, S. F., Brandenberger, R. H., Jreidini, P. & Quintin, J. Cosmic string loops as the seeds of super-massive black holes. J. Cosmol. Astropart. Phys. 2015, 007 (2015).
Smith, B. D. et al. The growth of black holes from Population III remnants in the Renaissance simulations. Mon. Not. R. Astron. Soc. 480, 3762–3773 (2018).
Johnson, J. L. & Bromm, V. The aftermath of the first stars: massive black holes. Mon. Not. R. Astron. Soc. 374, 1557–1568 (2007).
Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).
Paczynski, B. Thick accretion disks around black holes (Karl-Schwarzschild-Vorlesung 1981). Mitteilungen der Astronomischen Gesellschaft Hamburg 57, 27 (1982).
Silk, J. & Rees, M. J. Quasars and galaxy formation. Astron. Astrophys. 331, L1–L4 (1998).
Dubois, Y. et al. Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor. Mon. Not. R. Astron. Soc. 428, 2885–2900 (2013).
Dubois, Y. et al. Black hole evolution — I. Supernova-regulated black hole growth. Mon. Not. R. Astron. Soc. 452, 1502–1518 (2015).
Habouzit, M., Volonteri, M. & Dubois, Y. Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. Mon. Not. R. Astron. Soc. 468, 3935–3948 (2017).
Bower, R. G. et al. The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end. Mon. Not. R. Astron. Soc. 465, 32–44 (2017).
Bellovary, J. M. et al. Multimessenger signatures of massive black holes in dwarf galaxies. Mon. Not. R. Astron. Soc. 482, 2913–2923 (2019).
Pfister, H., Volonteri, M., Dubois, Y., Dotti, M. & Colpi, M. The erratic dynamical life of black hole seeds in high-redshift galaxies. Mon. Not. R. Astron. Soc. 486, 101–111 (2019).
Webb, N. et al. Radio detections during two state transitions of the intermediate-mass black hole HLX-1. Science 337, 554 (2012).
Mezcua, M., Roberts, T. P., Lobanov, A. P. & Sutton, A. D. The powerful jet of an off-nuclear intermediate-mass black hole in the spiral galaxy NGC 2276. Mon. Not. R. Astron. Soc. 448, 1893–1899 (2015).
Reines, A. E., Condon, J. J., Darling, J. & Greene, J. E. A new sample of (wandering) massive black holes in dwarf galaxies from high-resolution radio observations. Astrophys. J. 888, 36 (2020).
Mezcua, M. & Domínguez Sánchez, H. Hidden AGNs in dwarf galaxies revealed by MaNGA: light echoes, off-nuclear wanderers, and a new broad-line AGN. Astrophys. J. Lett. 898, L30 (2020).
Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).
Oesch, P. A. et al. A remarkably luminous galaxy at z = 11.1 measured with Hubble Space Telescope grism spectroscopy. Astrophys. J. 819, 129 (2016).
Uchiyama, H. et al. Luminous quasars do not live in the most overdense regions of galaxies at z ~ 4. Publ. Astron. Soc. Jpn 70, S32 (2018).
Mignoli, M. et al. Web of the giant: spectroscopic confirmation of a large-scale structure around the z = 6.31 quasar SDSS J1030+0524. Astron. Astrophys. 642, L1 (2020).
Habouzit, M. et al. The diverse galaxy counts in the environment of high-redshift massive black holes in Horizon-AGN. Mon. Not. R. Astron. Soc. 489, 1206–1229 (2019).
Costa, T., Sijacki, D., Trenti, M. & Haehnelt, M. G. The environment of bright QSOs at z ~ 6: star-forming galaxies and X-ray emission. Mon. Not. R. Astron. Soc. 439, 2146–2174 (2014).
Haiman, Z. Constraints from gravitational recoil on the growth of supermassive black holes at high redshift. Astrophys. J. 613, 36–40 (2004).
Sijacki, D., Springel, V. & Haehnelt, M. G. Growing the first bright quasars in cosmological simulations of structure formation. MNRAS 400, 100–122 (2009).
Volonteri, M. & Rees, M. J. Rapid growth of high-redshift black holes. Astrophys. J. 633, 624–629 (2005).
Inayoshi, K., Haiman, Z. & Ostriker, J. P. Hyper-Eddington accretion flows on to massive black holes. Mon. Not. R. Astron. Soc. 459, 3738–3755 (2016).
Madau, P., Haardt, F. & Dotti, M. Super-critical growth of massive black holes from stellar-mass seeds. Astrophys. J. Lett. 784, L38 (2014).
Dubois, Y. et al. Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift. Mon. Not. R. Astron. Soc. 423, 3616–3630 (2012).
Carmona-Loaiza, J. M., Colpi, M., Dotti, M. & Valdarnini, R. Overlapping inflows as catalysts of AGN activity — II. Relative importance of turbulence and inflow-disc interaction. Mon. Not. R. Astron. Soc. 453, 1608–1618 (2015).
Regan, J. A. et al. Super-Eddington accretion and feedback from the first massive seed black holes. Mon. Not. R. Astron. Soc. 486, 3892–3906 (2019).
Takeo, E., Inayoshi, K. & Mineshige, S. Hyper-Eddington accretion flows on to black holes accompanied by powerful outflows. Mon. Not. R. Astron. Soc. 497, 302–317 (2020).
Dubois, Y., Volonteri, M. & Silk, J. Black hole evolution — III. Statistical properties of mass growth and spin evolution using large-scale hydrodynamical cosmological simulations. Mon. Not. R. Astron. Soc. 440, 1590–1606 (2014).
Kulier, A., Ostriker, J. P., Natarajan, P., Lackner, C. N. & Cen, R. Understanding black hole mass assembly via accretion and mergers at late times in cosmological simulations. Astrophys. J. 799, 178 (2015).
Sathyaprakash, B. S. & Schutz, B. F. Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 12, 2 (2009).
Stacy, A., Bromm, V. & Lee, A. T. Building up the Population III initial mass function from cosmological initial conditions. Mon. Not. R. Astron. Soc. 462, 1307–1328 (2016).
Sugimura, K., Matsumoto, T., Hosokawa, T., Hirano, S. & Omukai, K. The birth of a massive first-star binary. Astrophys. J. Lett. 892, L14 (2020).
Kinugawa, T., Inayoshi, K., Hotokezaka, K., Nakauchi, D. & Nakamura, T. Possible indirect confirmation of the existence of Pop III massive stars by gravitational wave. Mon. Not. R. Astron. Soc. 442, 2963–2992 (2014).
Hartwig, T. et al. Gravitational waves from the remnants of the first stars. Mon. Not. R. Astron. Soc. 460, L74–L78 (2016).
Reisswig, C. et al. Formation and coalescence of cosmological supermassive-black-hole binaries in supermassive-star collapse. Phys. Rev. Lett. 111, 151101 (2013).
Haemmerlé, L. et al. Maximally accreting supermassive stars: a fundamental limit imposed by hydrostatic equilibrium. Astron. Astrophys. 632, L2 (2019).
Hartwig, T., Agarwal, B. & Regan, J. A. Gravitational wave signals from the first massive black hole seeds. Mon. Not. R. Astron. Soc. 479, L23–L27 (2018).
Colpi, M. Massive binary black holes in galactic nuclei and their path to coalescence. Space Sci. Rev. 183, 189–221 (2014).
De Rosa, A. et al. The quest for dual and binary supermassive black holes: a multi-messenger view. New Astron. Rev. 86, 101525 (2019).
Liu, X. et al. Chandra X-ray and Hubble Space Telescope imaging of optically selected kiloparsec-scale binary active galactic nuclei. I. Nature of the nuclear ionizing sources. Astrophys. J. 762, 110 (2013).
Eracleous, M., Boroson, T. A., Halpern, J. P. & Liu, J. A large systematic search for close supermassive binary and rapidly recoiling black holes. Astrophys. J. Suppl. 201, 23 (2012).
Liao, W.-T. et al. Discovery of a candidate binary supermassive black hole in a periodic quasar from circumbinary accretion variability. Mon. Not. R. Astron. Soc. 500, 4025–4041 (2021).
Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980).
Vasiliev, E., Antonini, F. & Merritt, D. The final-parsec problem in the collisionless limit. Astrophys. J. 810, 49 (2015).
Roedig, C. et al. Evolution of binary black holes in self gravitating discs. Dissecting the torques. Astron. Astrophys. 545, A127 (2012).
Callegari, S. et al. Pairing of supermassive black holes in unequal-mass galaxy mergers. Astrophys. J. Lett. 696, L89–L92 (2009).
Dosopoulou, F. & Antonini, F. Dynamical friction and the evolution of supermassive black hole binaries: the final hundred-parsec problem. Astrophys. J. 840, 31 (2017).
Bonetti, M., Sesana, A., Haardt, F., Barausse, E. & Colpi, M. Post-Newtonian evolution of massive black hole triplets in galactic nuclei — IV. Implications for LISA. Mon. Not. R. Astron. Soc. 486, 4044–4060 (2019).
Lupi, A., Haardt, F., Dotti, M. & Colpi, M. Massive black hole and gas dynamics in mergers of galaxy nuclei — II. Black hole sinking in star-forming nuclear discs. Mon. Not. R. Astron. Soc. 453, 3437–3446 (2015).
Tamfal, T. et al. Formation of LISA black hole binaries in merging dwarf galaxies: the imprint of dark matter. Astrophys. J. Lett. 864, L19 (2018).
Bortolas, E. et al. Global torques and stochasticity as the drivers of massive black hole pairing in the young Universe. Mon. Not. R. Astron. Soc. 498, 3601–3615 (2020).
Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. A ~50,000 M⊙ solar mass black hole in the nucleus of RGG 118. Astrophys. J. Lett. 809, L14 (2015).
Ghez, A. M. et al. Measuring distance and properties of the Milky way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008).
Genzel, R., Eisenhauer, F. & Gillessen, S. The galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010).
Event Horizon Telescope Collaboration et al. First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875, L6 (2019).
Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998).
Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. Lett. 539, L9–L12 (2000).
Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. Lett. 539, L13–L16 (2000).
Gültekin, K. et al. The M–σ and M–L relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys. J. 698, 198–221 (2009).
Heckman, T. M. & Kauffmann, G. The coevolution of galaxies and supermassive black holes: a local perspective. Science 333, 182 (2011).
Bailes, M. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 3, 344–366 (2021).
Volonteri, M., Lodato, G. & Natarajan, P. The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079–1088 (2008).
Greene, J. E. Low-mass black holes as the remnants of primordial black hole formation. Nat. Commun. 3, 1304 (2012).
Gair, J. R., Tang, C. & Volonteri, M. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function. Phys. Rev. D 81, 104014 (2010).
Reines, A. E., Greene, J. E. & Geha, M. Dwarf galaxies with optical signatures of active massive black holes. Astrophys. J. 775, 116 (2013).
Miller, B. P. et al. X-ray constraints on the local supermassive black hole occupation fraction. Astrophys. J. 799, 98 (2015).
Stone, N. C. & Metzger, B. D. Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Mon. Not. R. Astron. Soc. 455, 859–883 (2016).
Barth, A. J., Ho, L. C., Rutledge, R. E. & Sargent, W. L. W. POX 52: a dwarf Seyfert 1 galaxy with an intermediate-mass black hole. Astrophys. J. 607, 90–102 (2004).
Davis, T. A. et al. Revealing the intermediate-mass black hole at the heart of the dwarf galaxy NGC 404 with sub-parsec resolution ALMA observations. Mon. Not. R. Astron. Soc. 496, 4061–4078 (2020).
Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).
Babak, S. et al. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D 95, 103012 (2017).
Amaro-Seoane, P. Relativistic dynamics and extreme mass ratio inspirals. Living Rev. Relativ. 21, 4 (2018).
Merritt, D., Alexander, T., Mikkola, S. & Will, C. M. Stellar dynamics of extreme-mass-ratio inspirals. Phys. Rev. D 84, 044024 (2011).
Miller, M. C., Freitag, M., Hamilton, D. P. & Lauburg, V. M. Binary encounters with supermassive black holes: zero-eccentricity LISA events. Astrophys. J. Lett. 631, L117–L120 (2005).
Kocsis, B., Yunes, N. & Loeb, A. Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks. Phys. Rev. D 84, 024032 (2011).
Nandra, K. et al. The hot and energetic Universe: a White Paper presenting the science theme motivating the Athena+ mission. Preprint at https://arxiv.org/abs/1306.2307 (2013).
The Lynx Team. The Lynx Mission Concept Study Interim Report. Preprint at https://arxiv.org/abs/1809.09642 (2018).
Mushotzky, R. AXIS: a probe class next generation high angular resolution X-ray imaging satellite. Proc. SPIE 10699, https://doi.org/10.1117/12.2310003 (2018).
Agarwal, B., Davis, A. J., Khochfar, S., Natarajan, P. & Dunlop, J. S. Unravelling obese black holes in the first galaxies. Mon. Not. R. Astron. Soc. 432, 3438–3444 (2013).
Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017).
Valiante, R. et al. Chasing the observational signatures of seed black holes at z > 7: candidate observability. Mon. Not. R. Astron. Soc. 476, 407–420 (2018).
Punturo, M. et al. The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Grav. 27, 194002 (2010).
Reitze, D. et al. Cosmic Explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 35 (2019).
Valiante, R. et al. Unveiling early black hole growth with multifrequency gravitational wave observations. Mon. Not. R. Astron. Soc. 500, 4095–4109 (2021).
Sesana, A., Gair, J., Berti, E. & Volonteri, M. Reconstructing the massive black hole cosmic history through gravitational waves. Phys. Rev. D 83, 044036 (2011).
Sato, S. et al. DECIGO: the Japanese space gravitational wave antenna. J. Phys. Conf. Ser. 154, 012040 (2009).
Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local Universe. Astrophys. J. 813, 82 (2015).
Bogdán, Á., Lovisari, L., Volonteri, M. & Dubois, Y. Correlation between the total gravitating mass of groups and clusters and the supermassive black hole mass of brightest galaxies. Astrophys. J. 852, 131 (2018).
Baron, D. & Ménard, B. Black hole mass estimation for active galactic nuclei from a new angle. Mon. Not. R. Astron. Soc. 487, 3404–3418 (2019).
Bertone, G. et al. Gravitational wave probes of dark matter: challenges and opportunities. Preprint at https://arxiv.org/abs/1907.10610 (2019).
Gondolo, P. & Silk, J. Dark matter annihilation at the galactic center. Phys. Rev. Lett. 83, 1719–1722 (1999).
Macedo, C. F. B., Pani, P., Cardoso, V. & Crispino, L. C. B. Into the lair: gravitational-wave signatures of dark matter. Astrophys. J. 774, 48 (2013).
Kavanagh, B. J., Nichols, D. A., Bertone, G. & Gaggero, D. Detecting dark matter around black holes with gravitational waves: effects of dark-matter dynamics on the gravitational waveform. Phys. Rev. D 102, 083006 (2020).
Arvanitaki, A. & Dubovsky, S. Exploring the string axiverse with precision black hole physics. Phys. Rev. D 83, 044026 (2011).
Brito, R. et al. Stochastic and resolvable gravitational waves from ultralight bosons. Phys. Rev. Lett. 119, 131101 (2017).
Di Cintio, A. et al. A rumble in the dark: signatures of self-interacting dark matter in supermassive black hole dynamics and galaxy density profiles. Mon. Not. R. Astron. Soc. 469, 2845–2854 (2017).
Cruz, A. et al. Self-interacting dark matter and the delay of supermassive black hole growth. Mon. Not. R. Astron. Soc. 500, 2177–2187 (2021).
Penrose, R. Gravitational collapse: the role of general relativity. Riv. del Nuovo Cim. 1, 252–276 (1969).
Event Horizon Telescope Collaboration et al. First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019).
Acknowledgements
The authors thank F. Antonini, R. Brandenberger, G. Bertone, J. Gair, J. Greene, K. Inayoshi, M. Mapelli, P. Natarajana and P. Pani for comments on the manuscript, and T. Hartwig for estimating the number of Population III relics for this Review.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks Yue Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- M ⊙
-
Solar mass, a unit of mass that corresponds to 1.98847 × 1033 g.
- High-contrast density perturbations
-
The contrast of a density perturbation corresponds to the ratio of the difference between said density and the mean background density, called overdensity, to the mean background density. A patch of the Universe that has a high density contrast has a chance of collapsing under its own gravity, and in the most extreme cases the collapse can lead to a black hole.
- Metallicities
-
Metallicity is the sum of the mass fraction of all the elements present in the system heavier than hydrogen and helium. For metal-enriched systems, the Sun is often used as a unit of measure for metallicity, with Z⊙ = 0.012.
- cMpc
-
Comoving megaparsec (1 parsec, denoted pc, corresponds to 3.0857×1018 cm). Comoving distances — for which we prefactor a letter ‘c’ — are independent of cosmic expansion, whereas proper distances account for that, so that proper distances decrease at earlier cosmic times.
- Redshift
-
Short for ‘cosmological redshift’ in this Review, and used as indicator for distance and cosmic time. Given a cosmological model, there is a unique relation between the redshift of a source and its distance from us, as well as the age of the Universe at that redshift.
- pc
-
Parsec, a unit of length used in this Review that corresponds to 3.0857 × 1018 cm.
- Dynamical encounter
-
Here we refer to the close interaction of a single object (either a star or a black hole) with a binary (either a star and a black hole, or a double black hole binary). In a close fly-by, the incoming object extracts gravitational energy from the binary, reducing its semi-major axis. In an exchange, the lightest member of the binary is kicked off by the incoming heavier object, and a new heavier binary forms.
- Quantum-chromodynamic phase transition
-
As the temperature of the Universe decreases, free quarks become confined in hadrons (baryons and mesons, containing an odd and even number of quarks respectively). Examples of baryons are protons and neutrons; examples of mesons are pions and kaons.
- Compact objects
-
These are relics of stars and comprise white dwarfs, neutron stars and stellar black holes.
- Eddington luminosity
-
Maximal luminosity above which radiation pressure on electrons overcomes gravity on the infalling matter, under the assumption of spherical symmetry.
- Active galactic nuclei (AGN)
-
AGN and quasars are sources powered by an accreting massive black hole. Quasars are the most luminous among AGN.
- Feedback
-
Physical processes in which the energy/momentum output of a system (or a fraction of the output) returns to or impacts the system’s input.
- Radiative efficiency
-
ε is the efficiency at which gravitational energy is converted into radiation. It establishes the link between the accretion luminosity L and mass accretion rate \(\dot{M}\): \(L=\varepsilon \dot{M}{c}^{2}.\) In geometrically thin, optically thick accretion disks around black holes, ε ~ 0.06−0.32, depending on the spin, with ε ~ 0.1 used as reference value. ε can be lower depending on the geometry of the flow. \((1-\varepsilon )\dot{M}\) gives the mass growth rate of an MBH.
Rights and permissions
About this article
Cite this article
Volonteri, M., Habouzit, M. & Colpi, M. The origins of massive black holes. Nat Rev Phys 3, 732–743 (2021). https://doi.org/10.1038/s42254-021-00364-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-021-00364-9
This article is cited by
-
A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST
Nature Astronomy (2024)
-
A rapidly growing black hole observed in the early Universe
Nature Astronomy (2024)
-
Rapidly growing primordial black holes as seeds of the massive high-redshift JWST Galaxies
Science China Physics, Mechanics & Astronomy (2024)
-
The formation and cosmic evolution of dust in the early Universe: I. Dust sources
The Astronomy and Astrophysics Review (2024)
-
A high black-hole-to-host mass ratio in a lensed AGN in the early Universe
Nature (2024)