[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide

An Author Correction to this article was published on 19 September 2022

This article has been updated

Abstract

Symmetry plays a central role in determining the polarization of spin currents induced by electric fields. It also influences how these spin currents generate spin-transfer torques in magnetic devices. Here we show that an out-of-plane damping-like torque can be generated in ruthenium dioxide (RuO2)/permalloy devices when the Néel vector of the collinear antiferromagnet RuO2 is canted relative to the sample plane. By measuring characteristic changes in all three components of the electric-field-induced torque vector as a function of the angle of the electric field relative to the crystal axes, we find that the RuO2 generates a spin current with a well-defined tilted spin orientation that is approximately parallel to the Néel vector. A maximum out-of-plane damping-like spin torque efficiency per unit electric field of 7 ± 1 × 103 Ω−1 m−1 is measured at room temperature. The observed angular dependence indicates that this is an antiferromagnetic spin Hall effect with symmetries that are distinct from other mechanisms of spin-current generation reported in antiferromagnetic and ferromagnetic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time-reversal-odd spin Hall conductivity in RuO2.
Fig. 2: Spin-torque ferromagnetic resonance and second-harmonic Hall measurements.
Fig. 3: Determination of the vector components of the damping-like torque.
Fig. 4: Comparison of RuO2 and IrO2 and the dependence of the torque from RuO2 on layer thickness and temperature.

Similar content being viewed by others

Data availability

All the data accompanying this work are available at https://doi.org/10.5281/zenodo.6301100.

Change history

References

  1. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Article  Google Scholar 

  2. MacNeill, D. et al. Thickness dependence of spin–orbit torques generated by WTe2. Phys. Rev. B 96, 054450 (2017).

    Article  Google Scholar 

  3. Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Article  Google Scholar 

  4. DC, M. et al. Observation of anti-damping spin-orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3. Preprint at https://arxiv.org/abs/2012.09315 (2020).

  5. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

    Article  Google Scholar 

  6. Amin, V. P., Zemen, J. & Stiles, M. D. Interface-generated spin currents. Phys. Rev. Lett. 121, 136805 (2018).

    Article  Google Scholar 

  7. Amin, V. P., Li, J., Stiles, M. D. & Haney, P. M. Intrinsic spin currents in ferromagnets. Phys. Rev. B 99, 220405 (2019).

    Article  Google Scholar 

  8. Humphries, A. M. et al. Observation of spin–orbit effects with spin rotation symmetry. Nat. Commun. 8, 911 (2017).

    Article  Google Scholar 

  9. Baek, S. H. C. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Article  Google Scholar 

  10. Bose, A. et al. Observation of anomalous spin torque generated by a ferromagnet. Phys. Rev. Appl. 9, 064026 (2018).

    Article  Google Scholar 

  11. Das, K. S., Liu, J., Van Wees, B. J. & Vera-Marun, I. J. Efficient injection and detection of out-of-plane spins via the anomalous spin Hall effect in permalloy nanowires. Nano Lett. 18, 5633–5639 (2018).

    Article  Google Scholar 

  12. Safranski, C., Montoya, E. A. & Krivorotov, I. N. Spin–orbit torque driven by a planar Hall current. Nat. Nanotechnol. 14, 27–30 (2019).

    Article  Google Scholar 

  13. Safranski, C., Sun, J. Z., Xu, J.-W. & Kent, A. D. Planar Hall driven torque in a ferromagnet/nonmagnet/ferromagnet system. Phys. Rev. Lett. 124, 197204 (2020).

    Article  Google Scholar 

  14. Ou, Y. et al. Exceptionally high, strongly temperature dependent, spin Hall conductivity of SrRuO3. Nano Lett. 19, 3663–3670 (2019).

    Article  Google Scholar 

  15. Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article  Google Scholar 

  16. Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017).

    Article  Google Scholar 

  17. Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling. New J. Phys. 20, 073028 (2018).

  18. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article  Google Scholar 

  19. Holanda, J. et al. Magnetic damping modulation in IrMn3/Ni80Fe20 via the magnetic spin Hall effect. Phys. Rev. Lett. 124, 087204 (2020).

    Article  Google Scholar 

  20. Nan, T. et al. Controlling spin current polarization through non-collinear antiferromagnetism. Nat. Commun. 11, 4671 (2020).

    Article  Google Scholar 

  21. Chen, X. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).

    Article  Google Scholar 

  22. Hu, S. et al. Efficient field-free perpendicular magnetization switching by a magnetic spin Hall effect. Preprint at https://arxiv.org/abs/2103.09011 (2021).

  23. González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).

    Article  Google Scholar 

  24. Šmejkal, L., Sinova, J. & Jungwirth, T. Altermagnetism: spin-momentum locked phase protected by non-relativistic symmetries. Preprint at https://arxiv.org/abs/2105.05820 (2021).

  25. Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn 88, 123702 (2019).

    Article  Google Scholar 

  26. Yuan, L.-D., Wang, Z., Luo, J.-W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    Article  Google Scholar 

  27. Bose, A. et al. Effects of anisotropic strain on spin–orbit torque produced by the Dirac nodal line semimetal IrO2. ACS Appl. Mater. Interfaces 12, 55411–55416 (2020).

    Article  Google Scholar 

  28. Sun, Y., Zhang, Y., Liu, C.-X., Felser, C. & Yan, B. Dirac nodal lines and induced spin Hall effect in metallic rutile oxides. Phys. Rev. B 95, 235104 (2017).

    Article  Google Scholar 

  29. Jadaun, P., Register, L. F. & Banerjee, S. K. Rational design principles for giant spin Hall effect in 5d-transition metal oxides. Proc. Natl Acad. Sci. USA 117, 11878 (2020).

    Article  Google Scholar 

  30. Uchida, M., Nomoto, T., Musashi, M., Arita, R. & Kawasaki, M. Superconductivity in uniquely strained RuO2 films. Phys. Rev. Lett. 125, 147001 (2020).

    Article  Google Scholar 

  31. Ruf, J. P. et al. Strain-stabilized superconductivity. Nat. Commun. 12, 59 (2021).

    Article  Google Scholar 

  32. Berlijn, T. et al. Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 118, 077201 (2017).

    Article  Google Scholar 

  33. Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).

    Article  Google Scholar 

  34. Feng, Z. et al. Observation of the anomalous Hall effect in a collinear antiferromagnet. Preprint at https://arxiv.org/abs/2002.08712 (2020).

  35. Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article  Google Scholar 

  36. Shao, D.-F., Zhang, S.-H., Li, M., Eom, C.-B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).

    Article  Google Scholar 

  37. Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X 12, 011028 (2022).

    Google Scholar 

  38. Mook, A., Neumann, R. R., Johansson, A., Henk, J. & Mertig, I. Origin of the magnetic spin Hall effect: spin current vorticity in the Fermi sea. Phys. Rev. Res 2, 023065 (2020).

    Article  Google Scholar 

  39. Karimeddiny, S., Mittelstaedt, J. A., Buhrman, R. A. & Ralph, D. C. Transverse and longitudinal spin-torque ferromagnetic resonance for improved measurement of spin–orbit torque. Phys. Rev. Appl. 14, 024024 (2020).

    Article  Google Scholar 

  40. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  41. Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413–417 (2011).

    Article  Google Scholar 

  42. Hayashi, M., Kim, J., Yamanouchi, M. & Ohno, H. Quantitative characterization of the spin–orbit torque using harmonic Hall voltage measurements. Phys. Rev. B 89, 144425 (2014).

    Article  Google Scholar 

  43. Avci, C. O. et al. Interplay of spin–orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers. Phys. Rev. B 90, 224427 (2014).

    Article  Google Scholar 

  44. Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Preprint at https://arxiv.org/abs/2109.05933 (2021).

  45. Stiehl, G. M. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β-MoTe2. Phys. Rev. B 100, 184402 (2019).

    Article  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  49. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  Google Scholar 

  50. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

  51. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    Article  Google Scholar 

  52. Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    Article  MATH  Google Scholar 

  53. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  54. Yates, J. R., Wang, X., Vanderbilt, D. & Souza, I. Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. M. Cham for discussions. This research was supported by the US Department of Energy, DE-SC0017671 (R.J. and partial support for A.B.), the National Science Foundation (NSF) MRSEC programme through the Cornell Center for Materials Research, DMR-1719875 (X.S.Z. and partial support for A.B.), the NSF Platform for the Accelerated Realization, Analysis and Discovery of Interface Materials (PARADIM) under cooperative agreement no. 2039380 (N.J.S., H.P.N., J.S. and D.G.S.), the Gordon and Betty Moore Foundation’s EPiQS Initiative, grant GBMF9073 (D.G.S.), the NSF MRSEC programme, DMR-1420645 (D.-F.S.), and the NSF MRI programme, DMR-1429155 (X.Z.). The devices were fabricated using the shared facilities of the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (supported by the NSF, NNCI-2025233) and the facilities of Cornell Center for Materials Research.

Author information

Authors and Affiliations

Authors

Contributions

A.B. played the primary role in sample fabrication and, together with R.J., led the spin-torque measurements and data analysis, supervised by D.C.R. N.J.S., H.P.N. and J.S. grew the RuO2 and IrO2 films, supervised by D.G.S. D.-F.S. performed the DFT calculations, supervised by E.Y.T. X.S.Z. performed STEM imaging, supervised by D.A.M. A.B., R.J. and D.C.R. led the writing of the manuscript, with participation by all of the authors.

Corresponding author

Correspondence to Daniel C. Ralph.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Feng Pan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Discussion and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, A., Schreiber, N.J., Jain, R. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat Electron 5, 267–274 (2022). https://doi.org/10.1038/s41928-022-00744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00744-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing