[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rewiring gene circuitry for plant improvement

Abstract

Aspirations for high crop growth and yield, nutritional quality and bioproduction of materials are challenged by climate change and limited adoption of new technologies. Here, we review recent advances in approaches to profile and model gene regulatory activity over developmental and response time in specific cells, which have revealed the basis of variation in plant phenotypes: both redeployment of key regulators to new contexts and their repurposing to control different slates of genes. New synthetic biology tools allow tunable, spatiotemporal regulation of transgenes, while recent gene-editing technologies enable manipulation of the regulation of native genes. Ultimately, understanding how gene circuitry is wired to control form and function across varied plant species, combined with advanced technology to rewire that circuitry, will unlock solutions to our greatest challenges in agriculture, energy and the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene regulatory network architecture.
Fig. 2: Modes of GRN evolution that drive variation in development and environmental plasticity.
Fig. 3: Synthetic biology and gene-editing approaches to network manipulation.

Similar content being viewed by others

References

  1. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article  Google Scholar 

  2. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder, J. I. Genetic strategies for improving crop yields. Nature 575, 109–118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vitousek, P. M., Aber, J. D. & Howarth, R. W. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737–750 (1997).

  5. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Mickelbart, M. V., Hasegawa, P. M. & Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 16, 237–251 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Jez, J. M., Lee, S. G. & Sherp, A. M. The next green movement: plant biology for the environment and sustainability. Science 353, 1241–1244 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Meng, F. et al. Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in Arabidopsis thaliana. Plant Cell 33, 1997–2014 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reyna-Llorens, I. et al. Ancient duons may underpin spatial patterning of gene expression in C4 leaves. Proc. Natl Acad. Sci. USA 115, 1931–1936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lambert, S. A. et al. Similarity regression predicts evolution of transcription factor sequence specificity. Nat. Genet. 51, 981–989 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Hummel, N. F. C. et al. The trans-regulatory landscape of gene networks in plants. Cell Syst. 14, 501–511.e4 (2023).

  14. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hayden, C. A. & Jorgensen, R. A. Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes. BMC Biol. 5, 32 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  16. van der Horst, S., Filipovska, T., Hanson, J. & Smeekens, S. Metabolite control of translation by conserved peptide uORFs: the ribosome as a metabolite multisensor. Plant Physiol. 182, 110–122 (2020).

    Article  PubMed  Google Scholar 

  17. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5, e12776 (2010).

  18. Nolan, T. M. & Shahan, R. Resolving plant development in space and time with single-cell genomics. Curr. Opin. Plant Biol. 76, 102444 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Gaudinier, A. & Brady, S. M. Mapping transcriptional networks in plants: data-driven discovery of novel biological mechanisms. Annu. Rev. Plant Biol. 67, 575–594 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Li, M. et al. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat. Commun. 14, 2600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 17, 147–154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Staut, J., Pérez, N. M., Depuydt, T., Vandepoele, K. & Lukicheva, S. MINI-EX version 2: cell-type-specific gene regulatory network inference using an integrative single-cell transcriptomics approach. Preprint at bioRxiv https://doi.org/10.1101/2023.12.24.573246 (2023).

  23. Cirrone, J., Brooks, M. D., Bonneau, R., Coruzzi, G. M. & Shasha, D. E. OutPredict: multiple datasets can improve prediction of expression and inference of causality. Sci. Rep. 10, 6804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marand, A. P. & Schmitz, R. J. Single-cell analysis of cis-regulatory elements. Curr. Opin. Plant Biol. 65, 102094 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Schmitz, R. J., Grotewold, E. & Stam, M. Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell 34, 718–741 (2022).

    Article  PubMed  Google Scholar 

  27. Lu, Z. et al. The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat. Plants 5, 1250–1259 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Jin, R. et al. LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. Nat. Commun. 12, 626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai, X. et al. The LEAFY floral regulator displays pioneer transcription factor properties. Mol. Plant 14, 829–837 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, Y. et al. ‘Stripe’ transcription factors provide accessibility to co-binding partners in mammalian genomes. Mol. Cell 82, 3398–3411 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taylor-Teeples, M. et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Turco, G. M. et al. Molecular mechanisms driving switch behavior in xylem cell differentiation. Cell Rep. 28, 342–351 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Neph, S. et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 150, 1274–1286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alabadí, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883 (2001).

    Article  PubMed  Google Scholar 

  36. Bonnot, T. & Nagel, D. H. Time of the day prioritizes the pool of translating mRNAs in response to heat stress. Plant Cell 33, 2164–2182 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Varala, K. et al. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc. Natl Acad. Sci. USA 115, 6494–6499 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Para, A. et al. Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 10371–10376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clark, N. M. et al. Stem-cell-ubiquitous genes spatiotemporally coordinate division through regulation of stem-cell-specific gene networks. Nat. Commun. 10, 5574 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Page, L., Brin, S., Motwani, R. & Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web Technical Report (Stanford InfoLab, 1999).

  41. Zhang, K., Wang, M., Zhao, Y. & Wang, W. Taiji: system-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development. Sci. Adv. 5, eaav3262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reynoso, M. A. et al. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Dev. Cell 57, 1177–1192 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    Article  CAS  PubMed  Google Scholar 

  45. Tu, X. et al. Reconstructing the maize leaf regulatory network using ChIP–seq data of 104 transcription factors. Nat. Commun. 11, 5089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Julca, I. et al. Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nat. Plants 7, 1143–1159 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Leiboff, S. & Hake, S. Reconstructing the transcriptional ontogeny of maize and sorghum supports an inverse hourglass model of inflorescence development. Curr. Biol. 29, 3410–3419 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Kajala, K. et al. Innovation, conservation, and repurposing of gene function in root cell type development. Cell 184, 3333–3348 (2021).

  49. Wu, S. et al. A plausible mechanism, based upon SHORT-ROOT movement, for regulating the number of cortex cell layers in roots. Proc. Natl Acad. Sci. USA 111, 16184–16189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ortiz-Ramírez, C. et al. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374, 1247–1252 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barberon, M. et al. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164, 447–459 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).

  53. Shukla, V. et al. Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors. Proc. Natl Acad. Sci. USA 118, e2101730118 (2021).

  54. Cantó-Pastor, A. et al. A suberized exodermis is required for tomato drought tolerance. Nat. Plants 10, 118–130 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shiono, K. et al. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J. 80, 40–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Guillotin, B. et al. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 617, 785–791 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schiessl, K. et al. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula. Curr. Biol. 29, 3657–3668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Soyano, T., Shimoda, Y., Kawaguchi, M. & Hayashi, M. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus. Science 366, 1021–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Okushima, Y., Fukaki, H., Onoda, M., Theologis, A. & Tasaka, M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19, 118–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Niklaus, M. & Kelly, S. The molecular evolution of C4 photosynthesis: opportunities for understanding and improving the world’s most productive plants. J. Exp. Bot. 70, 795–804 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Rossini, L., Cribb, L., Martin, D. J. & Langdale, J. A. The maize golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13, 1231–1244 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lambret-Frotte, J., Smith, G. & Langdale, J. A. GOLDEN2-LIKE1 is sufficient but not necessary for chloroplast biogenesis in mesophyll cells of C4 grasses. Plant J. 117, 416–431 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Tu, X. et al. Limited conservation in cross-species comparison of GLK transcription factor binding suggested wide-spread cistrome divergence. Nat. Commun. 13, 7632 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mendieta, J. P. et al. Investigating the cis-regulatory basis of C3 and C4 photosynthesis in grasses at single-cell resolution. Preprint at bioRxiv https://doi.org/10.1101/2024.01.05.574340 (2024).

  65. Swift, J. et al. Single nuclei sequencing reveals C4 photosynthesis is based on rewiring of ancestral cell identity networks. Preprint at bioRxiv https://doi.org/10.1101/2023.10.26.562893 (2023).

  66. Gasch, P. et al. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell 28, 160–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Reynoso, M. A. et al. Evolutionary flexibility in flooding response circuitry in angiosperms. Science 365, 1291–1295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun, Y. et al. Divergence in the ABA gene regulatory network underlies differential growth control. Nat. Plants 8, 549–560 (2022).

  69. González, F. G. et al. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. J. Exp. Bot. 70, 1669–1681 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wu, J. et al. Overexpression of zmm28 increases maize grain yield in the field. Proc. Natl Acad. Sci. USA 116, 23850–23858 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wei, S. et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 377, eabi8455 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Butelli, E. et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26, 1301–1308 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Patron, N. J. et al. Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytol. 208, 13–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Haseloff, J. GFP variants for multispectral imaging of living cells. In Methods in Cell Biology Vol. 58 (eds Sullivan, K. F. & Kay, S. A.) Ch. 9, 139–151 (Academic Press, 1998).

  75. Belcher, M. S. et al. Design of orthogonal regulatory systems for modulating gene expression in plants. Nat. Chem. Biol. 16, 857–865 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Schaumberg, K. A. et al. Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nat. Methods 13, 94–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Lloyd, J. P. B. et al. Synthetic memory circuits for stable cell reprogramming in plants. Nat. Biotechnol. 40, 1862–1872 (2022).

  78. Guiziou, S., Maranas, C. J., Chu, J. C. & Nemhauser, J. L. An integrase toolbox to record gene-expression during plant development. Nat. Commun. 14, 1844 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brophy, J. A. N. et al. Synthetic genetic circuits as a means of reprogramming plant roots. Science 377, 747–751 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Fukaki, H., Tameda, S., Masuda, H. & Tasaka, M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J. 29, 153–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Pan, C. et al. CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nat. Plants 7, 942–953 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Ulmasov, T., Murfett, J., Hagen, G. & Guilfoyle, T. J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963–1971 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, R. et al. The 6xABRE synthetic promoter enables the spatiotemporal analysis of ABA-mediated transcriptional regulation. Plant Physiol. 177, 1650–1665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Benn, G. et al. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. Plant J. 80, 82–92 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cai, Y.-M. et al. Rational design of minimal synthetic promoters for plants. Nucleic Acids Res. 48, 11845–11856 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klein, J. C. et al. A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nat. Methods 17, 1083–1091 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jores, T. et al. Identification of plant enhancers and their constituent elements by STARR-seq in tobacco leaves. Plant Cell 32, 2120–2131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jores, T. et al. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nat. Plants 7, 842–855 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. de Almeida, B. P. et al. Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo. Nature 626, 207–211 (2023).

  90. Taskiran, I.I., Spanier, K.I., Dickmänken, H. et al. Cell-type-directed design of synthetic enhancers. Nature 626, 212–220 (2024).

  91. Somssich, M., Je, B. I., Simon, R. & Jackson, D. CLAVATA–WUSCHEL signaling in the shoot meristem. Development 143, 3238–3248 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, X. et al. Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. Nat. Plants 7, 419–427 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 (2017).

    Article  PubMed  Google Scholar 

  94. Song, X. et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40, 1403–1411 (2022).

  95. Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Zhou, J. et al. An efficient CRISPR–Cas12a promoter editing system for crop improvement. Nat. Plants 9, 588–604 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, Z. et al. A reverse chromatin immunoprecipitation technique based on the CRISPR–dCas9 system. Plant Physiol. 191, 1505–1519 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Stonedahl, F. & Wilensky, U. NetLogo PageRank Model ccl.northwestern.edu/netlogo/models/PageRank (2009).

Download references

Acknowledgements

We thank G. Akmakjian, C. Sepulveda, A. Morris and S. Borowsky for helpful suggestions. Our research is supported by the US National Science Foundation (IOS-211980 to J.B.-S. and DGE-1922642 to J.B.-S. and A.T.B.) and the US Department of Agriculture, US National Institute of Food and Agriculture—Agriculture and Food Research Initiative grants 2019-67013-29313 (to J.B.-S.) and 1026477 (to A.T.B.).

Author information

Authors and Affiliations

Authors

Contributions

A.T.B. and J.B.-S. conceptualized the paper. A.T.B. wrote the original draft. A.T.B. and J.B.-S. revised and edited the paper.

Corresponding author

Correspondence to Julia Bailey-Serres.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Yiping Qi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borowsky, A.T., Bailey-Serres, J. Rewiring gene circuitry for plant improvement. Nat Genet 56, 1574–1582 (2024). https://doi.org/10.1038/s41588-024-01806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01806-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing